Phong光照模型和Unity实现

2024-03-25 03:32
文章标签 实现 模型 unity 光照 phong

本文主要是介绍Phong光照模型和Unity实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 概述
    • 数学模型
        • 环境光部分
        • 漫反射系数
        • 镜面反射部分
    • Blinn-Phong光照模型
    • Unity Shader实现
    • 效果

概述

Phong光照模型由Lambert光照模型发展而来。Lambert描述了物体表面对漫反射的反应。Phong光照模型在此基础上增加了环境光和镜面反射两项内容。

Phong光照模型和Lambert光照模型一样,依然是个经验模型。这是说,Phong光照模型只是依据粗糙的实验数据得出的一个近似物理世界的物理模型,并没有严格地按照物理定律进行推论和分析。

在绝大多数场合,Phong光照模型能够表现出和真实物理世界相近的光照效果。

数学模型

Phong光照模型描述了物体在人眼中的呈现的样子,由物体表面的漫反射,环境光反射和镜面反射三种现象造成的效果组成。它可以写成一个公式:
I = I i K a + I i K d ⋅ ( L ⋅ N ) + I i K s ⋅ ( R ⋅ V ) n \begin{aligned} I &= I_iK_a +I_iK_d\cdot(L\cdot N) + I_iK_s\cdot(R\cdot V)^n \end{aligned} I=IiKa+IiKd(LN)+IiKs(RV)n

  • I I I:到达观察者的光强
  • I i I_i Ii:物体表面某点的入射光强
  • K a K_a Ka:环境光(ambient)反射系数
  • K d K_d Kd:漫反射(diffuse)反射系数
  • K s K_s Ks:镜面反射(specular)反射系数
  • L L L:指向光源的方向
  • N N N:物体表面某点的法线
  • R R R:反射光的出射方向
  • V V V:指向观察者的方向
  • n n n:镜面反射指数
    在这里插入图片描述
环境光部分

首先Phong是一个局部光照模型,它只针对直接来自光源的光的影响进行了比较好的描述,尽管这个描述属于经验上的描述。但实际物理世界还有其他来自其他物体反射的光的部分。这是全局光照模型需要考虑的事情,Phong光照模型把这一部分全部扔进了环境光部分,用一个简单的环境光反射系数进行约束。

漫反射系数

漫反射部分 I i K d ⋅ ( L ⋅ N ) = I i K d ⋅ ( ∣ L ∣ ⋅ ∣ N ∣ ⋅ c o s θ ) I_iK_d\cdot(L\cdot N) = I_iK_d\cdot(|L|\cdot |N|\cdot cos\theta) IiKd(LN)=IiKd(LNcosθ) 用一个漫反射系数来表示入射光中有多少部分参与了漫反射。同时Phong光照模型认为漫反射的效果与观察者的方位无关,与入射光和物体表面的法线的夹角有关。入射光越是垂直于物体表面入射,漫反射光越是强烈。

镜面反射部分

镜面反射部分 I i K s ⋅ ( R ⋅ V ) n = I i K s ⋅ ( ∣ R ∣ ⋅ ∣ V ∣ ⋅ c o s θ ) n I_iK_s\cdot(R\cdot V)^n = I_iK_s\cdot(|R|\cdot |V|\cdot cos\theta)^n IiKs(RV)n=IiKs(RVcosθ)n 用一个镜面反射系数来描述入射光中有多少光参与了镜面反射。同时Phong光照模型认为镜面反射的效果与反射光的方向和观察者方向有关。即观察者越是接近反射光的方向,镜面反射的效果越强烈。还需注意的是,这里的镜面反射并不是严格意义上的镜面反射,因为按照严格的镜面反射,反射角等于入射角,只要观察者不在反射光的方向上,反射光的强度就为0。所以这里的镜面反射只是指反射光在分布各个角度上,越是接近镜面反射光的方向则光强越是集中。 n n n 就是描述这样的集中程度的。

Blinn-Phong光照模型

Phong光照模型的镜面反射部分使用反射光和观察者方向来计算。为此我们还需要根据入射光和法线计算出反射光方向,计算式如下:
R = 2 ∗ N ( d o t ( N , L ) ) − L R = 2*N(dot(N,L)) - L R=2N(dot(N,L))L
这种计算比较耗时。Blinn-Phong光照模型另辟蹊径,使用观察者方向和入射光方向的角平分方向 H H H 参与计算,因为计算 H H H只需要计算 L + V L+V L+V,相比计算反射光方向,这个计算量就小得多。它与法线之间的夹角 ϕ = θ \phi = \theta ϕ=θ,其中 θ \theta θ就是反射光与观察者方向的夹角。于是 R ⋅ V R\cdot V RV就可以替换成 N ⋅ H N\cdot H NH

Unity Shader实现

这里的实现是Blinn-Phong光照模型的实现,只考虑单个光源的情况,且不考虑环境光照。

Shader "Custom/My First Lighting Shader" {Properties {_MainTex ("Albedo", 2D) = "white" {} // 漫反射系数_SpecularTint ("Specular", Color) = (0.5, 0.5, 0.5) // 镜面反射系数_Smoothness ("Smoothness", Range(0, 1)) = 0.1 // 即 n}SubShader {Tags {"LightMode" = "ForwardBase"}Pass {CGPROGRAM#pragma vertex MyVertexProgram#pragma fragment MyFragmentProgram#include "UnityStandardBRDF.cginc"#include "UnityStandardUtils.cginc"sampler2D _MainTex;float4 _SpecularTint;float4 _MainTex_ST;float _Smoothness;struct VertexData{float4 position : POSITION;float3 normal: NORMAL;float2 uv : TEXCOORD0; };struct Interpolators{float4 position: SV_POSITION;float2 uv: TEXCOORD0  ;float3 normal: TEXCOORD1;float3 worldPos: TEXCOORD2 ;};Interpolators MyVertexProgram(VertexData v){Interpolators i;i.uv = TRANSFORM_TEX(v.uv, _MainTex); // 按照纹理缩放和平移计算正确的uv坐标i.position = UnityObjectToClipPos(v.position); // 将模型坐标从模型坐标系转化到裁剪坐标系i.worldPos = mul(unity_ObjectToWorld, v.position); // 获取模型的世界坐标,用来计算观察者方向i.normal = UnityObjectToWorldNormal(v.normal); // 法线从模型坐标系转发化到世界坐标系return i;}float4 MyFragmentProgram(Interpolators i): SV_TARGET{i.normal = normalize(i.normal);float3 lightDir = _WorldSpaceLightPos0.xyz; // 入射光方向float3 viewDir = normalize(_WorldSpaceCameraPos - i.worldPos); // 观察者方向// -------------计算漫反射部分-------------------float3 lightColor = _LightColor0.rgb; // 入射光强float oneMinusReflectivity;float3 albedo = tex2D(_MainTex, i.uv).rgb;// 这一步是为了能量守恒,使得漫反射部分和镜面反射部分之和不能超过入射光albedo = EnergyConservationBetweenDiffuseAndSpecular(albedo, _SpecularTint.rgb, oneMinusReflectivity); float3 diffuse = albedo *lightColor * DotClamped(lightDir, i.normal); // 得到漫反射部分的结果// -------------计算镜面反射部分--------------------float3 halfVector = normalize(lightDir + viewDir); // 计算中间向量H,而不是直接计算反射光方向float3 specular = _SpecularTint.rgb * lightColor * pow(DotClamped(halfVector, i.normal),_Smoothness * 100); // 得到镜面反射部分return float4(diffuse + specular, 1); // 将漫反射部分和镜面反射部分相加得到结果}ENDCG}}
}

效果

完全粗糙的表面,只发生漫反射。
在这里插入图片描述
有镜面反射部分参与的效果
在这里插入图片描述
更强烈的镜面反射
在这里插入图片描述
第三张图即是比第二张图的n值更大的镜面反射。所以模型的高光部分比第二张图显得更小更集中。

另外模型变暗是因为能量守恒的约束,在代码中我们对漫反射和镜面反射进行了约束,使得他们之和不会超过入射光。否则,镜面反射和漫反射叠加,会使得物体变得很亮,甚至亮过光源。从第三张图中可以明显看到,镜面反射越强烈,漫反射的部分越弱。当物体几近完全镜面反射的时候,只有在物体表面的反射光方向正对观察者的点才有一点亮斑,其余全部呈现黑色。

这篇关于Phong光照模型和Unity实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843728

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand