Phong光照模型和Unity实现

2024-03-25 03:32
文章标签 实现 模型 unity 光照 phong

本文主要是介绍Phong光照模型和Unity实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 概述
    • 数学模型
        • 环境光部分
        • 漫反射系数
        • 镜面反射部分
    • Blinn-Phong光照模型
    • Unity Shader实现
    • 效果

概述

Phong光照模型由Lambert光照模型发展而来。Lambert描述了物体表面对漫反射的反应。Phong光照模型在此基础上增加了环境光和镜面反射两项内容。

Phong光照模型和Lambert光照模型一样,依然是个经验模型。这是说,Phong光照模型只是依据粗糙的实验数据得出的一个近似物理世界的物理模型,并没有严格地按照物理定律进行推论和分析。

在绝大多数场合,Phong光照模型能够表现出和真实物理世界相近的光照效果。

数学模型

Phong光照模型描述了物体在人眼中的呈现的样子,由物体表面的漫反射,环境光反射和镜面反射三种现象造成的效果组成。它可以写成一个公式:
I = I i K a + I i K d ⋅ ( L ⋅ N ) + I i K s ⋅ ( R ⋅ V ) n \begin{aligned} I &= I_iK_a +I_iK_d\cdot(L\cdot N) + I_iK_s\cdot(R\cdot V)^n \end{aligned} I=IiKa+IiKd(LN)+IiKs(RV)n

  • I I I:到达观察者的光强
  • I i I_i Ii:物体表面某点的入射光强
  • K a K_a Ka:环境光(ambient)反射系数
  • K d K_d Kd:漫反射(diffuse)反射系数
  • K s K_s Ks:镜面反射(specular)反射系数
  • L L L:指向光源的方向
  • N N N:物体表面某点的法线
  • R R R:反射光的出射方向
  • V V V:指向观察者的方向
  • n n n:镜面反射指数
    在这里插入图片描述
环境光部分

首先Phong是一个局部光照模型,它只针对直接来自光源的光的影响进行了比较好的描述,尽管这个描述属于经验上的描述。但实际物理世界还有其他来自其他物体反射的光的部分。这是全局光照模型需要考虑的事情,Phong光照模型把这一部分全部扔进了环境光部分,用一个简单的环境光反射系数进行约束。

漫反射系数

漫反射部分 I i K d ⋅ ( L ⋅ N ) = I i K d ⋅ ( ∣ L ∣ ⋅ ∣ N ∣ ⋅ c o s θ ) I_iK_d\cdot(L\cdot N) = I_iK_d\cdot(|L|\cdot |N|\cdot cos\theta) IiKd(LN)=IiKd(LNcosθ) 用一个漫反射系数来表示入射光中有多少部分参与了漫反射。同时Phong光照模型认为漫反射的效果与观察者的方位无关,与入射光和物体表面的法线的夹角有关。入射光越是垂直于物体表面入射,漫反射光越是强烈。

镜面反射部分

镜面反射部分 I i K s ⋅ ( R ⋅ V ) n = I i K s ⋅ ( ∣ R ∣ ⋅ ∣ V ∣ ⋅ c o s θ ) n I_iK_s\cdot(R\cdot V)^n = I_iK_s\cdot(|R|\cdot |V|\cdot cos\theta)^n IiKs(RV)n=IiKs(RVcosθ)n 用一个镜面反射系数来描述入射光中有多少光参与了镜面反射。同时Phong光照模型认为镜面反射的效果与反射光的方向和观察者方向有关。即观察者越是接近反射光的方向,镜面反射的效果越强烈。还需注意的是,这里的镜面反射并不是严格意义上的镜面反射,因为按照严格的镜面反射,反射角等于入射角,只要观察者不在反射光的方向上,反射光的强度就为0。所以这里的镜面反射只是指反射光在分布各个角度上,越是接近镜面反射光的方向则光强越是集中。 n n n 就是描述这样的集中程度的。

Blinn-Phong光照模型

Phong光照模型的镜面反射部分使用反射光和观察者方向来计算。为此我们还需要根据入射光和法线计算出反射光方向,计算式如下:
R = 2 ∗ N ( d o t ( N , L ) ) − L R = 2*N(dot(N,L)) - L R=2N(dot(N,L))L
这种计算比较耗时。Blinn-Phong光照模型另辟蹊径,使用观察者方向和入射光方向的角平分方向 H H H 参与计算,因为计算 H H H只需要计算 L + V L+V L+V,相比计算反射光方向,这个计算量就小得多。它与法线之间的夹角 ϕ = θ \phi = \theta ϕ=θ,其中 θ \theta θ就是反射光与观察者方向的夹角。于是 R ⋅ V R\cdot V RV就可以替换成 N ⋅ H N\cdot H NH

Unity Shader实现

这里的实现是Blinn-Phong光照模型的实现,只考虑单个光源的情况,且不考虑环境光照。

Shader "Custom/My First Lighting Shader" {Properties {_MainTex ("Albedo", 2D) = "white" {} // 漫反射系数_SpecularTint ("Specular", Color) = (0.5, 0.5, 0.5) // 镜面反射系数_Smoothness ("Smoothness", Range(0, 1)) = 0.1 // 即 n}SubShader {Tags {"LightMode" = "ForwardBase"}Pass {CGPROGRAM#pragma vertex MyVertexProgram#pragma fragment MyFragmentProgram#include "UnityStandardBRDF.cginc"#include "UnityStandardUtils.cginc"sampler2D _MainTex;float4 _SpecularTint;float4 _MainTex_ST;float _Smoothness;struct VertexData{float4 position : POSITION;float3 normal: NORMAL;float2 uv : TEXCOORD0; };struct Interpolators{float4 position: SV_POSITION;float2 uv: TEXCOORD0  ;float3 normal: TEXCOORD1;float3 worldPos: TEXCOORD2 ;};Interpolators MyVertexProgram(VertexData v){Interpolators i;i.uv = TRANSFORM_TEX(v.uv, _MainTex); // 按照纹理缩放和平移计算正确的uv坐标i.position = UnityObjectToClipPos(v.position); // 将模型坐标从模型坐标系转化到裁剪坐标系i.worldPos = mul(unity_ObjectToWorld, v.position); // 获取模型的世界坐标,用来计算观察者方向i.normal = UnityObjectToWorldNormal(v.normal); // 法线从模型坐标系转发化到世界坐标系return i;}float4 MyFragmentProgram(Interpolators i): SV_TARGET{i.normal = normalize(i.normal);float3 lightDir = _WorldSpaceLightPos0.xyz; // 入射光方向float3 viewDir = normalize(_WorldSpaceCameraPos - i.worldPos); // 观察者方向// -------------计算漫反射部分-------------------float3 lightColor = _LightColor0.rgb; // 入射光强float oneMinusReflectivity;float3 albedo = tex2D(_MainTex, i.uv).rgb;// 这一步是为了能量守恒,使得漫反射部分和镜面反射部分之和不能超过入射光albedo = EnergyConservationBetweenDiffuseAndSpecular(albedo, _SpecularTint.rgb, oneMinusReflectivity); float3 diffuse = albedo *lightColor * DotClamped(lightDir, i.normal); // 得到漫反射部分的结果// -------------计算镜面反射部分--------------------float3 halfVector = normalize(lightDir + viewDir); // 计算中间向量H,而不是直接计算反射光方向float3 specular = _SpecularTint.rgb * lightColor * pow(DotClamped(halfVector, i.normal),_Smoothness * 100); // 得到镜面反射部分return float4(diffuse + specular, 1); // 将漫反射部分和镜面反射部分相加得到结果}ENDCG}}
}

效果

完全粗糙的表面,只发生漫反射。
在这里插入图片描述
有镜面反射部分参与的效果
在这里插入图片描述
更强烈的镜面反射
在这里插入图片描述
第三张图即是比第二张图的n值更大的镜面反射。所以模型的高光部分比第二张图显得更小更集中。

另外模型变暗是因为能量守恒的约束,在代码中我们对漫反射和镜面反射进行了约束,使得他们之和不会超过入射光。否则,镜面反射和漫反射叠加,会使得物体变得很亮,甚至亮过光源。从第三张图中可以明显看到,镜面反射越强烈,漫反射的部分越弱。当物体几近完全镜面反射的时候,只有在物体表面的反射光方向正对观察者的点才有一点亮斑,其余全部呈现黑色。

这篇关于Phong光照模型和Unity实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843728

相关文章

C++对象布局及多态实现探索之内存布局(整理的很多链接)

本文通过观察对象的内存布局,跟踪函数调用的汇编代码。分析了C++对象内存的布局情况,虚函数的执行方式,以及虚继承,等等 文章链接:http://dev.yesky.com/254/2191254.shtml      论C/C++函数间动态内存的传递 (2005-07-30)   当你涉及到C/C++的核心编程的时候,你会无止境地与内存管理打交道。 文章链接:http://dev.yesky

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

通过SSH隧道实现通过远程服务器上外网

搭建隧道 autossh -M 0 -f -D 1080 -C -N user1@remotehost##验证隧道是否生效,查看1080端口是否启动netstat -tuln | grep 1080## 测试ssh 隧道是否生效curl -x socks5h://127.0.0.1:1080 -I http://www.github.com 将autossh 设置为服务,隧道开机启动

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测

时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测 目录 时序预测 | MATLAB实现LSTM时间序列未来多步预测-递归预测基本介绍程序设计参考资料 基本介绍 MATLAB实现LSTM时间序列未来多步预测-递归预测。LSTM是一种含有LSTM区块(blocks)或其他的一种类神经网络,文献或其他资料中LSTM区块可能被描述成智能网络单元,因为

vue项目集成CanvasEditor实现Word在线编辑器

CanvasEditor实现Word在线编辑器 官网文档:https://hufe.club/canvas-editor-docs/guide/schema.html 源码地址:https://github.com/Hufe921/canvas-editor 前提声明: 由于CanvasEditor目前不支持vue、react 等框架开箱即用版,所以需要我们去Git下载源码,拿到其中两个主

android一键分享功能部分实现

为什么叫做部分实现呢,其实是我只实现一部分的分享。如新浪微博,那还有没去实现的是微信分享。还有一部分奇怪的问题:我QQ分享跟QQ空间的分享功能,我都没配置key那些都是原本集成就有的key也可以实现分享,谁清楚的麻烦详解下。 实现分享功能我们可以去www.mob.com这个网站集成。免费的,而且还有短信验证功能。等这分享研究完后就研究下短信验证功能。 开始实现步骤(新浪分享,以下是本人自己实现

基于Springboot + vue 的抗疫物质管理系统的设计与实现

目录 📚 前言 📑摘要 📑系统流程 📚 系统架构设计 📚 数据库设计 📚 系统功能的具体实现    💬 系统登录注册 系统登录 登录界面   用户添加  💬 抗疫列表展示模块     区域信息管理 添加物资详情 抗疫物资列表展示 抗疫物资申请 抗疫物资审核 ✒️ 源码实现 💖 源码获取 😁 联系方式 📚 前言 📑博客主页:

探索蓝牙协议的奥秘:用ESP32实现高质量蓝牙音频传输

蓝牙(Bluetooth)是一种短距离无线通信技术,广泛应用于各种电子设备之间的数据传输。自1994年由爱立信公司首次提出以来,蓝牙技术已经经历了多个版本的更新和改进。本文将详细介绍蓝牙协议,并通过一个具体的项目——使用ESP32实现蓝牙音频传输,来展示蓝牙协议的实际应用及其优点。 蓝牙协议概述 蓝牙协议栈 蓝牙协议栈是蓝牙技术的核心,定义了蓝牙设备之间如何进行通信。蓝牙协议

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达