经典文献阅读之--NoPe-NeRF(优化无位姿先验的神经辐射场)

2024-03-24 23:50

本文主要是介绍经典文献阅读之--NoPe-NeRF(优化无位姿先验的神经辐射场),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 简介

没有预先计算相机姿态的情况下训练神经辐射场(NeRF)是具有挑战性的。最近在这个方向上的进展表明,在前向场景中可以联合优化NeRF和相机姿态。然而,这些方法在剧烈相机运动时仍然面临困难。我们通过引入无畸变单目深度先验来解决这个具有挑战性的问题。这些先验是通过在训练期间校正比例和平移参数生成的,从而能够约束连续帧之间的相对姿态。这种约束是通过我们提出的新型损失函数实现的。对真实世界室内和室外场景的实验表明,我们的方法可以处理具有挑战性的相机轨迹,并在新视角渲染质量和姿态估计精度方面优于现有方法。本文《NoPe-NeRF: Optimising Neural Radiance Field with No Pose Prior》的项目页面是https://nope-nerf.active.vision。

1. 主要贡献

综上所述,我们提出了一种方法来联合优化摄像机的姿势和来自具有大量摄像机运动的图像序列的NeRF。我们的系统是由三个方面的贡献促成的。

  1. 我们提出了一种新的方法,通过明确地模拟比例和位移失真,将单深度整合到无姿势的NeRF训练中。

  2. 我们通过使用未扭曲的单深度地图的帧间损失,为摄像机-NeRF联合优化提供相对位置。

  3. 我们通过一个基于深度的表面渲染损失来进一步规范我们的相对姿势估计。

2. 详细内容

文中解决了在无姿态NeRF训练中处理大型相机运动的挑战。考虑到给定一系列图像,相机内参和它们的单目深度估计,我们的方法同时恢复相机姿态和优化NeRF。我们假设相机内参在图像元块中可用,并运行一个现成的单目深度网络DPT[7]来获取单目深度估计。在不重复单目深度的好处的情况下,我们将围绕单目深度的有效集成到无posed-NeRF训练中展开。
训练是NeRF、相机姿态和每个单目深度地图的畸变参数的联合优化。通过最小化单目深度地图与从NeRF渲染的深度图之间的差异来监督畸变参数,这些深度图是多视角一致的。反过来,无畸变深度地图有效地调解了形状-辐射(shape-radiance)的歧义,从而简化了NeRF和相机姿态的训练
具体来说,无畸变深度地图提供了两个约束条件。我们通过在无畸变深度地图中反投影出的两个点云之间的基于Chamfer距离的对应来提供相邻图像之间的相对姿态,从而约束全局姿态估计。此外,我们通过将无畸变深度视为表面,使用基于表面的光度一致性来规范相对姿态估计
在这里插入图片描述

3. NeRF与Pose

3.1 NeRF

Neural Radiance Field(NeRF)[24] 将场景表示为一个映射函数 F Θ : ( x , d ) → ( c , σ ) F_Θ:(x,d)→(c,σ) FΘ:(xd)(cσ),其中 x ∈ R 3 x ∈ \mathbb{R}^3 xR3 为 3D位置, d ∈ R 3 d ∈ \mathbb{R}^3 dR3 为视角方向, c ∈ R 3 c ∈ \mathbb{R}^3 cR3为辐射颜色, σ σ σ 为体密度值。该映射通常是由参数化的神经网络 F Θ F_Θ FΘ 实现的。给定 N N N 张图像 I = { I i ∣ i = 0... N − 1 } I = \{I_i | i = 0 . . . N − 1\} I={Iii=0...N1} 及其相机姿态 Π = { π i ∣ i = 0... N − 1 } Π = \{π_i | i = 0 . . . N − 1\} Π={πii=0...N1},可以通过最小化合成图像 I ^ \hat{I} I^ 与捕获图像 I I I 之间的光度误差 L r g b = ∑ i N ∥ I i − h a t I i ∥ 2 2 L_{rgb} = \sum^ N_i \| I_i − hat{I}_i\|^2_2 Lrgb=iNIihatIi22 来优化 NeRF。
在这里插入图片描述
在这里, I ^ i \hat{I}_i I^i是通过聚合相机射线 r ( h ) = o + h d r(h) = o + hd r(h)=o+hd上的辐射颜色在近界和远界 h n h_n hn h f h_f hf之间渲染的。更具体地说,我们使用体积渲染函数来合成 I ^ i \hat{I}_i I^i
在这里插入图片描述
其中, T ( h ) = e x p ( − ∫ h n h σ ( r ( s ) ) d s ) T(h) = exp(−\int^h_{h_n} σ(r(s))ds) T(h)=exp(hnhσ(r(s))ds) 是沿着一条射线累积的透射率。更多细节请参见[24]。

3.2 联合优化姿态和 NeRF

之前的研究 [12、18、45] 表明,可以通过在 Eq. (2) 中使用相同的体积渲染过程,在最小化上述光度误差 L r g b L_{rgb} Lrgb 的同时估计相机参数和 NeRF。
关键在于将相机光线投射的条件设置为可变的相机参数 Π Π Π,因为相机光线 r r r 是相机姿态的函数。数学上,这种联合优化可以表示为:
在这里插入图片描述
其中,符号 Π ^ \hat{\Pi} Π^表示在优化过程中更新的相机参数。请注意,公式(1)和公式(3)之间的唯一区别在于公式(3)将相机参数视为变量。
一般来说,相机参数 Π \Pi Π包括相机内参、姿态和镜头畸变。本文只考虑估计相机姿态,例如,第 i i i帧图像的相机姿态是一个变换 T i = [ R i ∣ t i ] T_i=[R_i|t_i] Ti=[Riti],其中 R i ∈ S O ( 3 ) R_i\in SO(3) RiSO(3)表示旋转, t i ∈ R 3 t_i\in \mathbb{R}^3 tiR3表示平移。

3.3. 单目深度的校正

使用现成的单目深度网络(如DPT [28]),我们从输入图像生成单目深度序列 D = D i ∣ i = 0... N − 1 D = {D_i | i = 0 . . . N-1} D=Dii=0...N1。不出所料,单目深度图并不是多视角一致的,因此我们的目标是恢复一系列多视角一致的深度图,这些深度图进一步在我们的相对位姿损失项中得到利用。

具体而言,我们为每个单目深度图考虑两个线性变换参数,从而得到所有帧的变换参数序列 Ψ = ( α i , β i ) ∣ i = 0... N − 1 Ψ = {(α_i,β_i) | i = 0 . . . N-1} Ψ=(αiβi)i=0...N1,其中 α i α_i αi β i β_i βi分别表示比例因子和偏移量。在NeRF的多视角一致性约束下,我们的目标是恢复 D i D_i Di的多视角一致深度图 D i ∗ D^∗_i Di
在这里插入图片描述
通过联合优化 α i α_i αi β i β_i βi以及NeRF,来实现这种联合优化,主要是通过在未畸变的深度图 D i ∗ D^∗_i Di和通过NeRF渲染的深度图 D ^ i \hat{D}_i D^i之间强制实现一致性来实现的。这种一致性通过深度损失来实现:
在这里插入图片描述
其中
在这里插入图片描述
式(5)对NeRF和单目深度图都有好处。一方面,单目深度图为NeRF训练提供了强的几何先验,降低了形状-辐射度模糊性。另一方面,NeRF提供了多视角一致性,因此我们可以恢复一组多视角一致的深度图用于相对姿态估计。

…详情请参照古月居

这篇关于经典文献阅读之--NoPe-NeRF(优化无位姿先验的神经辐射场)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843207

相关文章

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

HotSpot虚拟机的经典垃圾收集器

读《深入理解Java虚拟机》第三版笔记。 关系 Serial、ParNew、Parallel Scavenge、Parallel Old、Serial Old(MSC)、Concurrent Mark Sweep (CMS)、Garbage First(G1)收集器。 如图: 1、Serial 和 Serial Old 收集器 2、ParNew 收集器 3、Parallel Sc