经典文献阅读之--NoPe-NeRF(优化无位姿先验的神经辐射场)

2024-03-24 23:50

本文主要是介绍经典文献阅读之--NoPe-NeRF(优化无位姿先验的神经辐射场),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 简介

没有预先计算相机姿态的情况下训练神经辐射场(NeRF)是具有挑战性的。最近在这个方向上的进展表明,在前向场景中可以联合优化NeRF和相机姿态。然而,这些方法在剧烈相机运动时仍然面临困难。我们通过引入无畸变单目深度先验来解决这个具有挑战性的问题。这些先验是通过在训练期间校正比例和平移参数生成的,从而能够约束连续帧之间的相对姿态。这种约束是通过我们提出的新型损失函数实现的。对真实世界室内和室外场景的实验表明,我们的方法可以处理具有挑战性的相机轨迹,并在新视角渲染质量和姿态估计精度方面优于现有方法。本文《NoPe-NeRF: Optimising Neural Radiance Field with No Pose Prior》的项目页面是https://nope-nerf.active.vision。

1. 主要贡献

综上所述,我们提出了一种方法来联合优化摄像机的姿势和来自具有大量摄像机运动的图像序列的NeRF。我们的系统是由三个方面的贡献促成的。

  1. 我们提出了一种新的方法,通过明确地模拟比例和位移失真,将单深度整合到无姿势的NeRF训练中。

  2. 我们通过使用未扭曲的单深度地图的帧间损失,为摄像机-NeRF联合优化提供相对位置。

  3. 我们通过一个基于深度的表面渲染损失来进一步规范我们的相对姿势估计。

2. 详细内容

文中解决了在无姿态NeRF训练中处理大型相机运动的挑战。考虑到给定一系列图像,相机内参和它们的单目深度估计,我们的方法同时恢复相机姿态和优化NeRF。我们假设相机内参在图像元块中可用,并运行一个现成的单目深度网络DPT[7]来获取单目深度估计。在不重复单目深度的好处的情况下,我们将围绕单目深度的有效集成到无posed-NeRF训练中展开。
训练是NeRF、相机姿态和每个单目深度地图的畸变参数的联合优化。通过最小化单目深度地图与从NeRF渲染的深度图之间的差异来监督畸变参数,这些深度图是多视角一致的。反过来,无畸变深度地图有效地调解了形状-辐射(shape-radiance)的歧义,从而简化了NeRF和相机姿态的训练
具体来说,无畸变深度地图提供了两个约束条件。我们通过在无畸变深度地图中反投影出的两个点云之间的基于Chamfer距离的对应来提供相邻图像之间的相对姿态,从而约束全局姿态估计。此外,我们通过将无畸变深度视为表面,使用基于表面的光度一致性来规范相对姿态估计
在这里插入图片描述

3. NeRF与Pose

3.1 NeRF

Neural Radiance Field(NeRF)[24] 将场景表示为一个映射函数 F Θ : ( x , d ) → ( c , σ ) F_Θ:(x,d)→(c,σ) FΘ:(xd)(cσ),其中 x ∈ R 3 x ∈ \mathbb{R}^3 xR3 为 3D位置, d ∈ R 3 d ∈ \mathbb{R}^3 dR3 为视角方向, c ∈ R 3 c ∈ \mathbb{R}^3 cR3为辐射颜色, σ σ σ 为体密度值。该映射通常是由参数化的神经网络 F Θ F_Θ FΘ 实现的。给定 N N N 张图像 I = { I i ∣ i = 0... N − 1 } I = \{I_i | i = 0 . . . N − 1\} I={Iii=0...N1} 及其相机姿态 Π = { π i ∣ i = 0... N − 1 } Π = \{π_i | i = 0 . . . N − 1\} Π={πii=0...N1},可以通过最小化合成图像 I ^ \hat{I} I^ 与捕获图像 I I I 之间的光度误差 L r g b = ∑ i N ∥ I i − h a t I i ∥ 2 2 L_{rgb} = \sum^ N_i \| I_i − hat{I}_i\|^2_2 Lrgb=iNIihatIi22 来优化 NeRF。
在这里插入图片描述
在这里, I ^ i \hat{I}_i I^i是通过聚合相机射线 r ( h ) = o + h d r(h) = o + hd r(h)=o+hd上的辐射颜色在近界和远界 h n h_n hn h f h_f hf之间渲染的。更具体地说,我们使用体积渲染函数来合成 I ^ i \hat{I}_i I^i
在这里插入图片描述
其中, T ( h ) = e x p ( − ∫ h n h σ ( r ( s ) ) d s ) T(h) = exp(−\int^h_{h_n} σ(r(s))ds) T(h)=exp(hnhσ(r(s))ds) 是沿着一条射线累积的透射率。更多细节请参见[24]。

3.2 联合优化姿态和 NeRF

之前的研究 [12、18、45] 表明,可以通过在 Eq. (2) 中使用相同的体积渲染过程,在最小化上述光度误差 L r g b L_{rgb} Lrgb 的同时估计相机参数和 NeRF。
关键在于将相机光线投射的条件设置为可变的相机参数 Π Π Π,因为相机光线 r r r 是相机姿态的函数。数学上,这种联合优化可以表示为:
在这里插入图片描述
其中,符号 Π ^ \hat{\Pi} Π^表示在优化过程中更新的相机参数。请注意,公式(1)和公式(3)之间的唯一区别在于公式(3)将相机参数视为变量。
一般来说,相机参数 Π \Pi Π包括相机内参、姿态和镜头畸变。本文只考虑估计相机姿态,例如,第 i i i帧图像的相机姿态是一个变换 T i = [ R i ∣ t i ] T_i=[R_i|t_i] Ti=[Riti],其中 R i ∈ S O ( 3 ) R_i\in SO(3) RiSO(3)表示旋转, t i ∈ R 3 t_i\in \mathbb{R}^3 tiR3表示平移。

3.3. 单目深度的校正

使用现成的单目深度网络(如DPT [28]),我们从输入图像生成单目深度序列 D = D i ∣ i = 0... N − 1 D = {D_i | i = 0 . . . N-1} D=Dii=0...N1。不出所料,单目深度图并不是多视角一致的,因此我们的目标是恢复一系列多视角一致的深度图,这些深度图进一步在我们的相对位姿损失项中得到利用。

具体而言,我们为每个单目深度图考虑两个线性变换参数,从而得到所有帧的变换参数序列 Ψ = ( α i , β i ) ∣ i = 0... N − 1 Ψ = {(α_i,β_i) | i = 0 . . . N-1} Ψ=(αiβi)i=0...N1,其中 α i α_i αi β i β_i βi分别表示比例因子和偏移量。在NeRF的多视角一致性约束下,我们的目标是恢复 D i D_i Di的多视角一致深度图 D i ∗ D^∗_i Di
在这里插入图片描述
通过联合优化 α i α_i αi β i β_i βi以及NeRF,来实现这种联合优化,主要是通过在未畸变的深度图 D i ∗ D^∗_i Di和通过NeRF渲染的深度图 D ^ i \hat{D}_i D^i之间强制实现一致性来实现的。这种一致性通过深度损失来实现:
在这里插入图片描述
其中
在这里插入图片描述
式(5)对NeRF和单目深度图都有好处。一方面,单目深度图为NeRF训练提供了强的几何先验,降低了形状-辐射度模糊性。另一方面,NeRF提供了多视角一致性,因此我们可以恢复一组多视角一致的深度图用于相对姿态估计。

…详情请参照古月居

这篇关于经典文献阅读之--NoPe-NeRF(优化无位姿先验的神经辐射场)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843207

相关文章

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案