经典文献阅读之--NoPe-NeRF(优化无位姿先验的神经辐射场)

2024-03-24 23:50

本文主要是介绍经典文献阅读之--NoPe-NeRF(优化无位姿先验的神经辐射场),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 简介

没有预先计算相机姿态的情况下训练神经辐射场(NeRF)是具有挑战性的。最近在这个方向上的进展表明,在前向场景中可以联合优化NeRF和相机姿态。然而,这些方法在剧烈相机运动时仍然面临困难。我们通过引入无畸变单目深度先验来解决这个具有挑战性的问题。这些先验是通过在训练期间校正比例和平移参数生成的,从而能够约束连续帧之间的相对姿态。这种约束是通过我们提出的新型损失函数实现的。对真实世界室内和室外场景的实验表明,我们的方法可以处理具有挑战性的相机轨迹,并在新视角渲染质量和姿态估计精度方面优于现有方法。本文《NoPe-NeRF: Optimising Neural Radiance Field with No Pose Prior》的项目页面是https://nope-nerf.active.vision。

1. 主要贡献

综上所述,我们提出了一种方法来联合优化摄像机的姿势和来自具有大量摄像机运动的图像序列的NeRF。我们的系统是由三个方面的贡献促成的。

  1. 我们提出了一种新的方法,通过明确地模拟比例和位移失真,将单深度整合到无姿势的NeRF训练中。

  2. 我们通过使用未扭曲的单深度地图的帧间损失,为摄像机-NeRF联合优化提供相对位置。

  3. 我们通过一个基于深度的表面渲染损失来进一步规范我们的相对姿势估计。

2. 详细内容

文中解决了在无姿态NeRF训练中处理大型相机运动的挑战。考虑到给定一系列图像,相机内参和它们的单目深度估计,我们的方法同时恢复相机姿态和优化NeRF。我们假设相机内参在图像元块中可用,并运行一个现成的单目深度网络DPT[7]来获取单目深度估计。在不重复单目深度的好处的情况下,我们将围绕单目深度的有效集成到无posed-NeRF训练中展开。
训练是NeRF、相机姿态和每个单目深度地图的畸变参数的联合优化。通过最小化单目深度地图与从NeRF渲染的深度图之间的差异来监督畸变参数,这些深度图是多视角一致的。反过来,无畸变深度地图有效地调解了形状-辐射(shape-radiance)的歧义,从而简化了NeRF和相机姿态的训练
具体来说,无畸变深度地图提供了两个约束条件。我们通过在无畸变深度地图中反投影出的两个点云之间的基于Chamfer距离的对应来提供相邻图像之间的相对姿态,从而约束全局姿态估计。此外,我们通过将无畸变深度视为表面,使用基于表面的光度一致性来规范相对姿态估计
在这里插入图片描述

3. NeRF与Pose

3.1 NeRF

Neural Radiance Field(NeRF)[24] 将场景表示为一个映射函数 F Θ : ( x , d ) → ( c , σ ) F_Θ:(x,d)→(c,σ) FΘ:(xd)(cσ),其中 x ∈ R 3 x ∈ \mathbb{R}^3 xR3 为 3D位置, d ∈ R 3 d ∈ \mathbb{R}^3 dR3 为视角方向, c ∈ R 3 c ∈ \mathbb{R}^3 cR3为辐射颜色, σ σ σ 为体密度值。该映射通常是由参数化的神经网络 F Θ F_Θ FΘ 实现的。给定 N N N 张图像 I = { I i ∣ i = 0... N − 1 } I = \{I_i | i = 0 . . . N − 1\} I={Iii=0...N1} 及其相机姿态 Π = { π i ∣ i = 0... N − 1 } Π = \{π_i | i = 0 . . . N − 1\} Π={πii=0...N1},可以通过最小化合成图像 I ^ \hat{I} I^ 与捕获图像 I I I 之间的光度误差 L r g b = ∑ i N ∥ I i − h a t I i ∥ 2 2 L_{rgb} = \sum^ N_i \| I_i − hat{I}_i\|^2_2 Lrgb=iNIihatIi22 来优化 NeRF。
在这里插入图片描述
在这里, I ^ i \hat{I}_i I^i是通过聚合相机射线 r ( h ) = o + h d r(h) = o + hd r(h)=o+hd上的辐射颜色在近界和远界 h n h_n hn h f h_f hf之间渲染的。更具体地说,我们使用体积渲染函数来合成 I ^ i \hat{I}_i I^i
在这里插入图片描述
其中, T ( h ) = e x p ( − ∫ h n h σ ( r ( s ) ) d s ) T(h) = exp(−\int^h_{h_n} σ(r(s))ds) T(h)=exp(hnhσ(r(s))ds) 是沿着一条射线累积的透射率。更多细节请参见[24]。

3.2 联合优化姿态和 NeRF

之前的研究 [12、18、45] 表明,可以通过在 Eq. (2) 中使用相同的体积渲染过程,在最小化上述光度误差 L r g b L_{rgb} Lrgb 的同时估计相机参数和 NeRF。
关键在于将相机光线投射的条件设置为可变的相机参数 Π Π Π,因为相机光线 r r r 是相机姿态的函数。数学上,这种联合优化可以表示为:
在这里插入图片描述
其中,符号 Π ^ \hat{\Pi} Π^表示在优化过程中更新的相机参数。请注意,公式(1)和公式(3)之间的唯一区别在于公式(3)将相机参数视为变量。
一般来说,相机参数 Π \Pi Π包括相机内参、姿态和镜头畸变。本文只考虑估计相机姿态,例如,第 i i i帧图像的相机姿态是一个变换 T i = [ R i ∣ t i ] T_i=[R_i|t_i] Ti=[Riti],其中 R i ∈ S O ( 3 ) R_i\in SO(3) RiSO(3)表示旋转, t i ∈ R 3 t_i\in \mathbb{R}^3 tiR3表示平移。

3.3. 单目深度的校正

使用现成的单目深度网络(如DPT [28]),我们从输入图像生成单目深度序列 D = D i ∣ i = 0... N − 1 D = {D_i | i = 0 . . . N-1} D=Dii=0...N1。不出所料,单目深度图并不是多视角一致的,因此我们的目标是恢复一系列多视角一致的深度图,这些深度图进一步在我们的相对位姿损失项中得到利用。

具体而言,我们为每个单目深度图考虑两个线性变换参数,从而得到所有帧的变换参数序列 Ψ = ( α i , β i ) ∣ i = 0... N − 1 Ψ = {(α_i,β_i) | i = 0 . . . N-1} Ψ=(αiβi)i=0...N1,其中 α i α_i αi β i β_i βi分别表示比例因子和偏移量。在NeRF的多视角一致性约束下,我们的目标是恢复 D i D_i Di的多视角一致深度图 D i ∗ D^∗_i Di
在这里插入图片描述
通过联合优化 α i α_i αi β i β_i βi以及NeRF,来实现这种联合优化,主要是通过在未畸变的深度图 D i ∗ D^∗_i Di和通过NeRF渲染的深度图 D ^ i \hat{D}_i D^i之间强制实现一致性来实现的。这种一致性通过深度损失来实现:
在这里插入图片描述
其中
在这里插入图片描述
式(5)对NeRF和单目深度图都有好处。一方面,单目深度图为NeRF训练提供了强的几何先验,降低了形状-辐射度模糊性。另一方面,NeRF提供了多视角一致性,因此我们可以恢复一组多视角一致的深度图用于相对姿态估计。

…详情请参照古月居

这篇关于经典文献阅读之--NoPe-NeRF(优化无位姿先验的神经辐射场)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843207

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom