NASA数据集——2015 年30 米分辨率的地衣地面覆盖率模型估计值

2024-03-24 09:52

本文主要是介绍NASA数据集——2015 年30 米分辨率的地衣地面覆盖率模型估计值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

cABoVE: Lichen Forage Cover over Fortymile Caribou Range, Alaska and Yukon, 2000-2015

文件修订日期:2021-07-21

数据集版本: 1

摘要

本数据集提供了美国阿拉斯加东部内陆和加拿大育空地区 Fortymile 研究区 2015 标称年 30 米分辨率的地衣地面覆盖率模型估计值。绘制的地衣是该地区九个常住驯鹿(Rangifer tarandus)群的重要冬季饲料。该模型采用随机森林建模方法,利用植被输入以及环境和光谱预测因子来估算 2015 年的地衣覆盖率。该模型的输入数据由历史原位植被地块、目视航测和最近的无人机系统(UAS)图像汇总而成,与 583,200 平方公里研究区域内 30 米分辨率的大地遥感卫星(Landsat)像素保持一致。通过将训练有素的模型应用于历史 Landsat 图像,该模型还用于估算 2000 年的地衣覆盖率。该模型还根据已公布的算法估算了 2015 年的地衣数量。此外,还提供了分辨率小于 1 米的地点级存在-不存在地图以及分辨率为 2 米和 30 米的地点级地衣覆盖地图。地点级数据来自 2017 年夏季在阿拉斯加内陆和育空西部 22 个森林和高山地点使用无人机系统采集的高分辨率 RGB 图像。由于在 7 个地点使用了两台独特的 UAS 成像仪,22 个地点共有 29 次数据采集。每个无人机系统数据采集与三个数据文件相关联。这些景观尺度地图有助于了解地衣丰度和分布趋势,也有助于驯鹿研究、管理和保护。
该数据集包含 90 个 GeoTIFF(*.tif)格式的数据文件。其中 3 个文件提供了整个 Fortymile 研究区域的地衣覆盖率和数量,87 个文件提供了地点级地衣覆盖率或存在-不存在估计值。

数据集概述

本数据集提供了美国阿拉斯加内陆东部和加拿大育空地区 Fortymile 研究区 30 米分辨率的地衣地面覆盖率模型估计值,时间为 2015 标称年。绘制的地衣是该地区九个常住驯鹿(Rangifer tarandus)群的重要冬季饲料。该模型采用随机森林建模方法,利用植被输入以及环境和光谱预测因子来估算 2015 年的地衣覆盖率。该模型的输入数据由历史原位植被地块、目视航测和最近的无人机系统(UAS)图像汇总而成,与 583,200 平方公里研究区域内 30 米分辨率的大地遥感卫星(Landsat)像素保持一致。通过将训练有素的模型应用于历史 Landsat 图像,该模型还用于估算 2000 年的地衣覆盖率。该模型还根据已公布的算法估算了 2015 年的地衣数量。此外,还提供了分辨率小于 1 米的地点级存在-不存在地图以及分辨率为 2 米和 30 米的地点级地衣覆盖地图。地点级数据来自 2017 年夏季在阿拉斯加内陆和育空西部 22 个森林和高山地点使用无人机系统采集的高分辨率 RGB 图像。由于在 7 个地点使用了两台独特的 UAS 成像仪,22 个地点共有 29 次数据采集。每个无人机系统数据采集与三个数据文件相关联。这些景观尺度地图有助于了解地衣的丰度和分布趋势,也有助于驯鹿的研究、管理和保护。

项目:北极-北方脆弱性实验

北极-北方脆弱性实验(ABoVE)是美国国家航空航天局(NASA)陆地生态计划的一项野外活动,从 2015 年开始在阿拉斯加和加拿大西部进行,为期 8 到 10 年。ABoVE 的研究将基于实地的过程级研究与机载和卫星传感器获得的地理空间数据产品联系起来,为提高分析和建模能力奠定了基础,这些能力是了解和预测北极和北方地区生态系统对气候变化的反应及其对社会的影响所必需的。

数据特征

空间覆盖范围:美国阿拉斯加州和加拿大育空地区

上图 参考地点

域:核心

州/地区:阿拉斯加和育空地区

网格单元:Bh006v004, Bh007v004, Bh006v005, Bh007v005, Bh008v005, Bh006v006, Bh007v006, Bh008v006, Bh006v007, Bh007v007, Bh008v007, Bh009v007, Bh006v008, Bh007v008, Bh008v008, Bh009v008, Bh007v009, Bh008v009

空间分辨率:研究区覆盖范围为 30 米;地点级产品可变(表 1)

时间覆盖范围:研究区域估算为 2000 年和 2015 年;站点数据为 2017 年 8 月

时间分辨率:研究区域估算为每年一次;遗址数据为单点

研究区域:纬度和经度以十进制度表示。

最北纬度 最南纬度 最东经度 最西经度

SitesWesternmost LongitudeEasternmost LongitudeNorthernmost LatitudeSouthernmost Latitude
70.0906458.61239-128.25554-153.85832

数据文件信息

本数据集中包含 90 个 GeoTIFF(*.tif)格式的数据文件。站点级文件的命名约定为站点_日期_FA_平台_日期-类型_分辨率.tif(例如,EASU27_20170607_70m_P3A_lichen_cover_02m.tif),其中

站点 = 站点代码(表 2)
日期 = 无人机系统成像日期,以 YYYYMMDD 为单位
FA = 无人机系统的飞行高度,以米为单位("3 米"、"46 米 "或 "70 米")。
平台= 使用的成像仪(Phantom 3 Advanced ("P3A") 或 Phantom 4 Pro ("P4P")
数据类型 = "存在 "或 "地衣覆盖物
R = 空间分辨率

File NamesResolutionUnitsDescription
Entire Study Area
2000_macrolichen_cover_Fortymile_study_area.tif30 mpercent1 file; percent cover of lichen over the full range for the year 2000.
2015_macrolichen_cover_Fortymile_study_area.tif30 mpercent1 file; percent cover of lichen over the full range for the year 2015.
2015_lichen_volume_Fortymile_study_area.tif30 mdm3 m-21 file; estimated lichen volume per pixel over the full range. Water coded as "200".
Site-level Files
Site_Date_FA_Platform_presence.tif<1 m29 files; plot level presence (1) or absence (0) of lichen.
Site_Date_FA_Platform_lichen_cover_R.tif2 mpercent29 files; plot level percent cover of lichen at 2 m resolution
Site_Date_FA_Platform_lichen_cover_R.tif30 mpercent29 files; plot level percent cover of lichen at 30 m resolution

数据细节

有一个波段
无数据值编码为 "255
投影为标准 ABoVE,"Canada_Albers_Equal_Area_Conic",EPSG:102001。
站点级文件名中使用的站点代码。这 22 个站点代码是从当地地理特征名称中提取的缩写。用户须知:不提供完整站点名称的关键字。使用或理解数据并不需要这些名称。纬度和经度以十进制度表示。

Site CodeSample DateLatitudeLongitude
BADO012017-08-0163.84842778-137.5080917
BLRI012017-07-3064.59859722-138.3196111
BLRI022017-07-3064.60512778-138.3301889
EASU272017-06-0765.51098333-145.375425
EASU322017-06-0765.48817778-145.4120667
EASU992017-06-0765.49551389-145.3820194
FACR112017-06-0665.06966944-147.2734778
FACR172017-06-0465.08308056-147.3244083
MD372017-06-0164.95796667-148.3500722
MD462017-05-3164.96740556-148.3713278
NOKL012017-07-3164.47211111-138.1918778
NOKL022017-07-3164.43580556-138.2341417
OMD41_17_12017-06-0164.96266667-148.2225917
TOWH012017-07-2164.07572778-140.9604028
TOWH022017-07-2264.07057778-140.9552139
TWSU202017-06-0765.40775278-145.9511306
TWSU212017-06-0765.40140278-145.9762917
TWSU222017-06-0665.39768889-145.9674361
WEHE012017-07-2964.56963333-138.1439889
WEHE022017-07-2964.57357778-138.1450028
WIPA012017-07-2865.08397222-138.2776333
WIPA022017-07-2865.08588889-138.2686528

应用与推导

陆生地衣覆盖是影响北方北方森林草食性和群落跨季节相互作用的一个重要因素。具体而言,这些地衣覆盖率地图可用于评估估计的地衣覆盖率对 Fortymile 驯鹿群资源选择的影响(Macander 等人,2020 年)。景观尺度地图有助于了解地衣丰度和分布趋势,也有助于驯鹿研究、管理和保护。

使用高分辨率的无人机系统图像有助于弥合精细尺度的现场取样与卫星图像之间的差距,展示了一种相对廉价且高效的方法来收集与野生动物管理相关的植被覆盖数据。来自无人机系统的图像为校准和验证大空间范围的区域地衣覆盖模型提供了数据,并为跟踪野外地点地衣覆盖面积的变化情况提供了基线。

绘制阿拉斯加中部和育空地区几个驯鹿牧场的地衣覆盖分布图为今后估算地衣覆盖随时间的变化提供了有用的基准。变化分析对于探索驯鹿相对于其资源选择和名义分布范围的长期种群动态,以及评估驯鹿管理行动的有效性和气候变化的潜在影响都具有潜在价值。

数据采集、材料和方法

研究人员对阿拉斯加中东部、育空地区中部和南部以及不列颠哥伦比亚省最西北部 583,200 平方公里范围内当前(约 2015 年)的轻型大型裸子植物部分覆盖率进行了建模。所选区域包括 Fortymile(10 万平方公里)、白山(6500 平方公里)、Aishihik(1 万平方公里)、Clear Creek(3000 平方公里)、Chisana(8000 平方公里)、Hart River(13000 平方公里)、Klaza(11000 平方公里)、Kluane(8000 平方公里)、Pelly(9000 平方公里)和 Laberge(5000 平方公里)驯鹿山脉。研究区域由连绵起伏的丘陵、亚高山和高山地区以及大片森林覆盖的河谷组成,从西北部的阿拉斯加白山一直延伸到东南部的育空地区怀特霍斯附近。该地区的火灾历史有据可查。

建模

美国国家公园管理局于 2006-2015 年间收集了育空-查理河国家保护区(YUCH)29 个地点的现有现场地块数据。育空环境部在 2010 年至 2016 年期间收集了地衣覆盖率的目视估算数据。2017 年夏季,无人机系统在阿拉斯加内陆和育空西部的 22 个森林和高山地点收集了更多陆地地衣覆盖率数据和高分辨率 RGB 图像。(本数据集中提供了这 22 个地点上空 29 次无人机飞行的地点级地衣存在和覆盖数据)。这些数据用于模型训练和验证。使用最大似然算法对地面层进行了有监督的光谱分类。分类后的图像被汇总为与 Landsat 像素一致的 30 米分辨率像素,并计算出每个像素中三个类别所占的比例。关于建模方法的深入介绍,请参见 Macander 等人(2020 年)。

 Macander, M.J., E.C. Palm, G.V. Frost, J.D. Herriges, P.R. Nelson, C. Roland, K.L.M. Russell, M.J. Suitor, T.W. Bentzen, K. Joly, S.J. Goetz, and M. Hebblewhite. 2020. Lichen cover mapping for caribou ranges in interior Alaska and Yukon. Environmental Research Letters 15:055001. https:doi.org/10.1088/1748-9326/ab6d38

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassifyimport pandas as pd
import leafmapurl = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
dfleafmap.nasa_data_login()results, gdf = leafmap.nasa_data_search(short_name="ABoVE_Forage_Lichen_Maps_1867",cloud_hosted=True,bounding_box=(-153.86, 58.61, -128.26, 70.09),temporal=("2017-07-20", "2017-08-08"),count=-1,  # use -1 to return all datasetsreturn_gdf=True,
)gdf.explore()#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

Macander, M., E.C. Palm, G.V. Frost, and P.R. Nelson. 2021. ABoVE: Lichen Forage Cover over Fortymile Caribou Range, Alaska and Yukon, 2000-2015. ORNL DAAC, Oak Ridge, Tennessee, USA. ABoVE: Lichen Forage Cover over Fortymile Caribou Range, Alaska and Yukon, 2000-2015, https://doi.org/10.3334/ORNLDAAC/1867

致谢

研究经费由美国土地管理局、阿拉斯加鱼类和野生动物部、国家公园管理局、育空环境部和美国宇航局 ABoVE(拨款 NNX15AW71A、NNX17AE44G、NNX15AU03A)提供。此外,作者还获得了美国宇航局地球与空间科学奖学金、加拿大野生动物保护协会 W. Garfield Weston 奖学金、蒙大拿大学 W.A. Franke 研究生奖学金以及蒙大拿生态系统研究所研究生研究奖的支持。作者感谢数十位植物学家收集了地面和空中植被数据,这些数据被用来训练和开发地衣覆盖模型。

数据链接

ABoVE: Lichen Forage Cover over Fortymile Caribou Range, Alaska and Yukon, 2000-2015

网址推荐

 0代码在线构建地图应用

Mapmost loginicon-default.png?t=N7T8https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

前言 – 人工智能教程icon-default.png?t=N7T8https://www.cbedai.net/xg

这篇关于NASA数据集——2015 年30 米分辨率的地衣地面覆盖率模型估计值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841245

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

30常用 Maven 命令

Maven 是一个强大的项目管理和构建工具,它广泛用于 Java 项目的依赖管理、构建流程和插件集成。Maven 的命令行工具提供了大量的命令来帮助开发人员管理项目的生命周期、依赖和插件。以下是 常用 Maven 命令的使用场景及其详细解释。 1. mvn clean 使用场景:清理项目的生成目录,通常用于删除项目中自动生成的文件(如 target/ 目录)。共性规律:清理操作