Matlab|基于条件风险价值CVaR的微网动态定价与调度策略

2024-03-23 23:52

本文主要是介绍Matlab|基于条件风险价值CVaR的微网动态定价与调度策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 主要内容

模型示意图

电能交易流程

模型亮点

2 部分代码

3 程序结果

4 下载链接


主要内容

程序复现文章《A cooperative Stackelberg game based energy management considering price discrimination and risk assessment》,建立基于主从博弈的考虑差别定价和风险管理的微网动态定价与调度策略模型,构建了双层能源管理框架,上层为零售商的动态定价模型,目标是社会福利最大化;下层是多个产消者的合作博弈模型,优化各产消者的能量管理策略,各产消者之间可以进行P2P交易。同时,采用纳什谈判法对多个产消者的合作剩余进行公平分配,还考虑了运行风险,采用条件风险价值(CVaR)随机规划方法来描述零售商的预期损失。

  • 模型示意图

  • 电能交易流程

  • 模型亮点

该模型通过建立双层模型,出现了双线性和非线性问题,为了解决该问题,引入 kkt条件和大M法将原模型转化为等效单层模型,从而进行求解。而且程序采用三种对比算例进行分析,非常方便对照学习,算例1和2采用matlab+cplex求解,算例3采用matlab+mosek求解!

部分代码

%% 模型参数设定
%产消者/零售商从主网购电价格 元/MW
u_Db=1e3*[0.4,0.4,0.4,0.4,0.4,0.4,0.79,0.79,0.79,1.2,1.2,1.2,1.2,1.2,0.79,0.79,0.79,1.2,1.2,1.2,0.79,0.79,0.4,0.4];
%产消者/零售商向主网售电价格 元/MW
u_Ds=1e3*[0.35,0.35,0.35,0.35,0.35,0.35,0.68,0.68,0.68,1.12,1.12,1.12,1.12,1.12,0.68,0.68,0.68,1.12,1.12,1.12,0.79,0.79,0.35,0.35];
%零售商与产消者的交易价格上下限
u_Pbmax=1e3*[0.7,0.7,0.7,0.7,0.7,0.7,1.1,1.1,1.1,1.5,1.5,1.5,1.5,1.5,1,1,1,1.5,1.5,1.5,1.1,1.1,0.7,0.7];%购价上限
u_Pbmin=u_Pbmax-0.5*1e3*ones(1,24);%购价下限
u_Psmax=u_Ds;%售价上限
u_Psmin=u_Psmax-0.35*1e3*ones(1,24);%售价下限
%产消者1-3  电负荷 MW
P_load_1=[6.62295082,5.770491803,5.442622951,5.31147541,5.37704918,5.573770492,6.295081967,6.491803279,7.213114754,7.803278689,8.131147541,8.131147541,7.93442623,7.278688525,7.016393443,7.016393443,7.147540984,8.262295082,9.442622951,9.37704918,9.37704918,7.93442623,6.819672131,5.901639344];
P_load_2=[3.344262295,3.016393443,2.754098361,2.754098361,2.754098361,2.885245902,3.147540984,3.344262295,3.639344262,3.93442623,4,4.131147541,4,3.737704918,3.475409836,3.606557377,3.606557377,4.131147541,4.721311475,4.655737705,4.721311475,4,3.409836066,3.016393443];
P_load_3=[11.60655738,10.16393443,9.442622951,9.245901639,9.114754098,9.639344262,10.75409836,11.3442623,12.45901639,13.50819672,14.10772834,14.16393443,13.63934426,12.72131148,12.19672131,12.32786885,12.59016393,14.29508197,16.59016393,16.45901639,16.26229508,13.7704918,12.13114754,10.55737705];
%产消者1-3  导入10个场景的出力和概率
Sw=10; %场景数量
load P_Gen.mat  %产消者1风电出力    P_Gen_1  维度:10*24     P_Gen_2    P_Gen_3 
%产消者1-3风电场景概率
pai_1=0.1*ones(1,10);pai_2=0.1*ones(1,10);pai_3=0.1*ones(1,10);
%其它固定参数
C_E=80; %储能充放成本
P_Pbmax=15; %最大购电量
P_Psmax=15; %最大售电量
Cap=10; %最大储能容量MW
P_Ecmax=3; %充放能功率上限
P_Edmax=3; %充放能功率上限
SOCmin=0.2; %最小存储量百分比 单位%
SOCmax=0.85; %最大容量百分比
SOCini=0.33; %初始容量百分比
SOCexp=0.85; %末段容量百分比
M=1E8; %大M法
beta=0.1; %厌恶风险系数
%% 决策变量初始化
delta=sdpvar(1,3);
eta_1=sdpvar(Sw,1); %产消者1的风险调度辅助变量
eta_2=sdpvar(Sw,1); %产消者2的风险调度辅助变量
eta_3=sdpvar(Sw,1); %产消者3的风险调度辅助变量
P_Ps_1=sdpvar(Sw,24); %零售商向产消者1售能量
P_Ps_2=sdpvar(Sw,24); %零售商向产消者2售能量
P_Ps_3=sdpvar(Sw,24); %零售商向产消者3售能量
P_Pb_1=sdpvar(Sw,24); %零售商从产消者1购能量
P_Pb_2=sdpvar(Sw,24); %零售商从产消者2购能量
P_Pb_3=sdpvar(Sw,24); %零售商从产消者3购能量
u_Ps=sdpvar(3,24); %零售商向产消者购能价格
u_Pb=sdpvar(3,24); %零售商从产消者购能价格
P_trading_1=sdpvar(Sw,24); %产消者1合作博弈交易量
P_trading_2=sdpvar(Sw,24); %产消者2合作博弈交易量
P_trading_3=sdpvar(Sw,24); %产消者3合作博弈交易量
SOC_1=sdpvar(Sw,24); %产消者1储能容量状态 单位%
SOC_2=sdpvar(Sw,24); %产消者2储能容量状态 单位%
SOC_3=sdpvar(Sw,24); %产消者3储能容量状态 单位%
P_Ec_1=sdpvar(Sw,24); %储能充电
P_Ec_2=sdpvar(Sw,24); %储能充电
P_Ec_3=sdpvar(Sw,24); %储能充电
P_Ed_1=sdpvar(Sw,24); %储能放电
P_Ed_2=sdpvar(Sw,24); %储能放电
P_Ed_3=sdpvar(Sw,24); %储能放电
Uabs_1=binvar(Sw,24); %储能充放电状态,0-1变量
Uabs_2=binvar(Sw,24); %储能充放电状态,0-1变量
Uabs_3=binvar(Sw,24); %储能充放电状态,0-1变量
Urelea_1=binvar(Sw,24); %储能充放电状态,0-1变量
Urelea_2=binvar(Sw,24); %储能充放电状态,0-1变量
Urelea_3=binvar(Sw,24); %储能充放电状态,0-1变量
%定义KKT条件中的拉格朗日乘子

程序结果

4 下载链接

这篇关于Matlab|基于条件风险价值CVaR的微网动态定价与调度策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839911

相关文章

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

在JS中的设计模式的单例模式、策略模式、代理模式、原型模式浅讲

1. 单例模式(Singleton Pattern) 确保一个类只有一个实例,并提供一个全局访问点。 示例代码: class Singleton {constructor() {if (Singleton.instance) {return Singleton.instance;}Singleton.instance = this;this.data = [];}addData(value)

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

matlab读取NC文件(含group)

matlab读取NC文件(含group): NC文件数据结构: 代码: % 打开 NetCDF 文件filename = 'your_file.nc'; % 替换为你的文件名% 使用 netcdf.open 函数打开文件ncid = netcdf.open(filename, 'NC_NOWRITE');% 查看文件中的组% 假设我们想读取名为 "group1" 的组groupName

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87

C# double[] 和Matlab数组MWArray[]转换

C# double[] 转换成MWArray[], 直接赋值就行             MWNumericArray[] ma = new MWNumericArray[4];             double[] dT = new double[] { 0 };             double[] dT1 = new double[] { 0,2 };

一种改进的red5集群方案的应用、基于Red5服务器集群负载均衡调度算法研究

转自: 一种改进的red5集群方案的应用: http://wenku.baidu.com/link?url=jYQ1wNwHVBqJ-5XCYq0PRligp6Y5q6BYXyISUsF56My8DP8dc9CZ4pZvpPz1abxJn8fojMrL0IyfmMHStpvkotqC1RWlRMGnzVL1X4IPOa_  基于Red5服务器集群负载均衡调度算法研究 http://ww

LeetCode:64. 最大正方形 动态规划 时间复杂度O(nm)

64. 最大正方形 题目链接 题目描述 给定一个由 0 和 1 组成的二维矩阵,找出只包含 1 的最大正方形,并返回其面积。 示例1: 输入: 1 0 1 0 01 0 1 1 11 1 1 1 11 0 0 1 0输出: 4 示例2: 输入: 0 1 1 0 01 1 1 1 11 1 1 1 11 1 1 1 1输出: 9 解题思路 这道题的思路是使用动态规划