LeetCode:2617. 网格图中最少访问的格子数(优先级队列 Java)

2024-03-23 18:04

本文主要是介绍LeetCode:2617. 网格图中最少访问的格子数(优先级队列 Java),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

2617. 网格图中最少访问的格子数

题目描述:

实现代码与解析:

优先级队列

原理思路:


2617. 网格图中最少访问的格子数

题目描述:

        给你一个下标从 0 开始的 m x n 整数矩阵 grid 。你一开始的位置在 左上角 格子 (0, 0) 。

当你在格子 (i, j) 的时候,你可以移动到以下格子之一:

  • 满足 j < k <= grid[i][j] + j 的格子 (i, k) (向右移动),或者
  • 满足 i < k <= grid[i][j] + i 的格子 (k, j) (向下移动)。

请你返回到达 右下角 格子 (m - 1, n - 1) 需要经过的最少移动格子数,如果无法到达右下角格子,请你返回 -1 。

示例 1:

输入:grid = [[3,4,2,1],[4,2,3,1],[2,1,0,0],[2,4,0,0]]
输出:4
解释:上图展示了到达右下角格子经过的 4 个格子。

示例 2:

输入:grid = [[3,4,2,1],[4,2,1,1],[2,1,1,0],[3,4,1,0]]
输出:3
解释:上图展示了到达右下角格子经过的 3 个格子。

示例 3:

输入:grid = [[2,1,0],[1,0,0]]
输出:-1
解释:无法到达右下角格子。

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 105
  • 1 <= m * n <= 105
  • 0 <= grid[i][j] < m * n
  • grid[m - 1][n - 1] == 0

实现代码与解析:

优先级队列

import java.util.Arrays;
import java.util.PriorityQueue;class Solution {public int minimumVisitedCells(int[][] grid) {int n = grid.length, m = grid[0].length;int[][] d = new int[n][m]; // 到每个单元格的步数// 初始化for (int i = 0; i < n; i++) {Arrays.fill(d[i], -1);}// int[0] 步数 int[1] 行或列号,行堆存的列号,列堆存的行号,确定位置PriorityQueue<int[]>[] pqrs = new PriorityQueue[n]; // pq rowsPriorityQueue<int[]>[] pqcs = new PriorityQueue[m]; // pq colsfor (int i = 0; i < n; i++) {pqrs[i] = new PriorityQueue<>((a, b) -> a[0] - b[0]); // 小根堆,按到该位置的步数}for (int i = 0; i < m; i++) {pqcs[i] = new PriorityQueue<>((a, b) -> a[0] - b[0]);}d[0][0] = 1; // 起始for (int i = 0; i < n; i++) {for (int j = 0; j < m; j++) {// 行// 不能到i, j的弹出直接,因为不能一步到,剩下的同行格更不可能一步到while (!pqrs[i].isEmpty() && grid[i][pqrs[i].peek()[1]] + pqrs[i].peek()[1] < j) {pqrs[i].poll();}// 如果最后行堆中有剩余,堆顶就是我们当前单元格的一个方向的答案,比较取最小,当然在-1时直接赋值即可if (!pqrs[i].isEmpty()) {d[i][j] = d[i][j] == -1 || d[i][pqrs[i].peek()[1]] + 1 < d[i][j] ? d[i][pqrs[i].peek()[1]] + 1 : d[i][j];}// 列while (!pqcs[j].isEmpty() && pqcs[j].peek()[1] + grid[pqcs[j].peek()[1]][j] < i) {pqcs[j].poll();}if (!pqcs[j].isEmpty()) {d[i][j] = d[i][j] == -1 || d[pqcs[j].peek()[1]][j] + 1 < d[i][j] ? d[pqcs[j].peek()[1]][j] + 1 : d[i][j];}// 如果可以到达,加入到堆中if (d[i][j] != -1) {pqrs[i].offer(new int[]{d[i][j], j});pqcs[j].offer(new int[]{d[i][j], i});}}}return d[n - 1][m - 1];}
}

原理思路:

        其实就是dp,只不过这里走的条件是和格内值和位置决定,所有需要额外数据结构来维护。

        进行遍历,由于只能从左和上而来,所以我们正常从左向右遍历,为了找出可以到达i,j的格子,我们用优先级队列(小堆)来维护每一行和每一列,里面存放两个值,一个到i,j的步数(用于堆的排序,),一个为单元格内的值d[i][j](用于判断能否到达当前单元格)。

        开始遍历,拿行举例,先把行堆内不能到达该单元格的弹出,因为如果不能一步到达,说明至少需要两步,而左侧单元格已经进行计算过了,如果两步可以到达当前单元格,那么前面一定存在可以一步到达的单元格(不过不一定是该答案,因为也许有比它步数还小的把这个单元格更新了,当然它肯定在堆中),所以直接弹出即可。

       如果最后堆中都被弹出了,说明在水平方向,无法到达该单元格,如果还有元素,堆顶就是该单元格行方向上的最小步数(小顶堆),进行比较取小的然后更新。因为我们初始化-1为不能到达,所以如果单元格内为-1,就不比较了,直接赋值。

        列也同理。最后把当前单元格信息放入堆中为后面的单元格更新作为条件即可。

        最后求出d[n -1][m-1]。

这篇关于LeetCode:2617. 网格图中最少访问的格子数(优先级队列 Java)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/839109

相关文章

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Java中读取YAML文件配置信息常见问题及解决方法

《Java中读取YAML文件配置信息常见问题及解决方法》:本文主要介绍Java中读取YAML文件配置信息常见问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录1 使用Spring Boot的@ConfigurationProperties2. 使用@Valu

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

浅析Spring如何控制Bean的加载顺序

《浅析Spring如何控制Bean的加载顺序》在大多数情况下,我们不需要手动控制Bean的加载顺序,因为Spring的IoC容器足够智能,但在某些特殊场景下,这种隐式的依赖关系可能不存在,下面我们就来... 目录核心原则:依赖驱动加载手动控制 Bean 加载顺序的方法方法 1:使用@DependsOn(最直

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys