2016年认证杯SPSSPRO杯数学建模D题(第一阶段)NBA是否有必要设立四分线解题全过程文档及程序

本文主要是介绍2016年认证杯SPSSPRO杯数学建模D题(第一阶段)NBA是否有必要设立四分线解题全过程文档及程序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2016年认证杯SPSSPRO杯数学建模

D题 NBA是否有必要设立四分线

原题再现

  NBA 联盟从 1946 年成立到今天,一路上经历过无数次规则上的变迁。有顺应民意、皆大欢喜的,比如 1973 年在技术统计中增加了抢断和盖帽数据;有应运而生、力挽狂澜的,比如 1954 年引入 24 秒进攻时限;有因人废事、“打击迫害”的,比如为了限制麦肯,将三秒区宽度从 6 英尺扩大到 12 英尺,又为了限制张伯伦,进一步扩大到 16 英尺;有步步为营、小心翼翼的,比如 2004年在 NBDL 试行所有投篮只算两分,直至第四节最后 5 分钟和加时赛才启用三分球规则;也有弄巧成拙、朝令夕改的,比如 1953 年曾规定每队每名球员单节只能犯规两次,第三次犯规就被罚出场,实施不久之后就不了了之……本质上,NBA 是一个以盈利为目的的商业联赛,为了最大限度地提升比赛观赏性,保证球迷们心甘情愿地掏钱买票,修改现有规则或设立新的规则都是可能的。
  79-80 赛季,NBA 开始实验性的引入三分球制,当时的原则是“仅限于常规赛使用”。而在 80-81 赛季,NBA 正式全面引入三分线。目前,NBA 三分线的最远处距离篮筐是 7.25 米。值得注意的是 NBA 曾在 94-95 赛季将三分线距离缩短为 6.70 米,距离变短后人人都能投三分,很难反映出球员的远投能力,所以 97-98 赛季,NBA 又将三分线距离改回原来的 7.25 米。
  四分线的推出能更全面反映出 1 名射手的远投能力。2015-2016 赛季,在28-32 英尺(8.53-9.75 米)之间,投篮最准的是快船队的贾马尔·克劳福德,总共 23 次出手命中 14 球,命中率高达 60.9%。排在第 2 位的是湖人队的肯道尔·马绍尔,23 投 11 中,命中率为 47.8%。勇士队的斯蒂芬·库里则以 38.1%(21 投 8 中)的命中率位列第 3 位。NBA 一旦引入四分球制度,投手的春天将就此到来。那些震撼联盟的神射手们又多了一项致命的武器。此外,四分球拉开空间之后,会让内线球员的防守压力变得更小,篮下的肉搏变得更少,更有利于内线的大个子们保持自己的健康。  
  第一阶段问题:
  1. 请建立合理的数学模型,量化评估 NBA 是否应该引入四分线。
  2. 如果让你负责设计四分线所在的位置,提出一个较为合理的方案。

整体求解过程概述(摘要)

  本文针对 NBA 是否建立四分线的问题进行了模型研究,以 NBA 盈利效益最大化为目标函数,并运用多种求解方法,对模型进行求解,并得到合理的四分线所在位置方案。
  问题一,对于题中是否引入四分线,我们首先利用数据分析法,发现四分球是衡量一支球队进攻能力强弱的重要指标之一。其次进一步举例阐述 NBA 明显在 28 至 32 英尺地带的投篮情况,数据转化后证明四分球比三分球收益有较大优势,最后利用层次分析法进一步验证引入四分线的必要。
  问题二,为了更准确地确定四分线的位置,我们建立简单的物理模型。在 28-32 英尺(8.53-9.75 米)之间划分为五个距离区间,通过分析不同投篮区间情况下投篮命中率,来预测设立四分线的最佳位置方案。从出手角度,出手速度,出手高度之间的关系等方面综合考虑。建立 XOY 坐标系,求出四分线所在弧线轨迹。
  最后,我们就 MATLAB 拟合曲线及其对应的残差图得出较为合理的四分线的位置,并画图说明。

问题分析:

  现如今,NBA 比赛的走势瞬息万变,球员为了赢得比赛往往会选用分值较高的三分球来扩大或缩小分差。尤其是今年的勇士队,斯蒂芬·库里就是忠实的三分爱好者,你可以经常看到他投出远在接近半场或者球员通道的“三分球”。
  显然,当三分球逐渐成为 NBA 比赛的主流,越来越多的球员愿意在三分线外甚至离三分线还有一段距离就出手,那么是不是应该在比赛中设立四分球规则?熟悉篮球的人会知道,在现在的比赛中,进攻方只会故意拖延时间,而其他球员则只懂站在篮下搏斗,而非尝试去得分。有时候短短一分钟的比赛可以被拉长到十分钟,这令比赛变得乏味。而且,联盟的平均身高也在不断上升,1952 年时球员平均身高为 1.93 米,体重为 195磅。现在,NBA 球员的平均尺寸约 2.01 米,体重为 219 磅。可见现在的球员比引入三分线前更高大、更强壮、更敏捷。
  通过用数值分析法,我们仔细地研究了 NBA 近十年五支球队(图 1)三分命中率发现,实力各不相同的球队三分球命中率变化幅度不大,这样就无法显示出球队的远投能力。
  设立四分线的目的很纯粹,就是让球员更好地发挥他们的天赋,并且增加球赛的观赏性,使 NBA 的总盈利达到最大化。

模型假设:

  1.假设远投手不受非比赛因素的影响。
  2.假设投手的体能投三分和投四分基本无变化。
  3.假设投手不受投篮姿势的影响。

论文缩略图:

在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

部分程序代码:(代码和文档not free)

1.分析法当中的求解矩阵特征(MATLAB 程序)
>>clear all;
A=[1 7 2 3;1/7 1 2/5 1/2;1/2 5/2 1 3/7;1/3 2 7/3 1];
d=eig(A)
d=
0.8333+2.4438i
0.8333-2.4438i
>>[V,D]=eig(A)
2. v 为最小出手速度,MATLAB 求解,代码如下:
function v=fun(h);
H=3.05;
g=9.8;
L=8.53
v=sqrt(g*[H-h+sqrt(L^2+(H-h)^2)]);
fun(2.0)
ans =
9.722
fun(2.1)
ans =
9.665
fun(2.2)
ans =
9.609
3. 对不同的出手速度和出手高度的出手角度和入射角度,MATLAB 求解,代码如下:
function f=fun1(v);
L=8.53;
H=3.05;
g=9.8;
h=1.8;
t=v^2/(g*L)*(1+sqrt(1-2*g/v^2*(H-h+g*L^2/(2*v^2))));
f=atan(t)/pi*180;
fun1(8.0)
ans =
40.566
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可

这篇关于2016年认证杯SPSSPRO杯数学建模D题(第一阶段)NBA是否有必要设立四分线解题全过程文档及程序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/838571

相关文章

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

Codeforces Round #113 (Div. 2) B 判断多边形是否在凸包内

题目点击打开链接 凸多边形A, 多边形B, 判断B是否严格在A内。  注意AB有重点 。  将A,B上的点合在一起求凸包,如果凸包上的点是B的某个点,则B肯定不在A内。 或者说B上的某点在凸包的边上则也说明B不严格在A里面。 这个处理有个巧妙的方法,只需在求凸包的时候, <=  改成< 也就是说凸包一条边上的所有点都重复点都记录在凸包里面了。 另外不能去重点。 int