Jetson AGX ORIN 配置 FGVC-PIM 神经网络

2024-03-23 11:28

本文主要是介绍Jetson AGX ORIN 配置 FGVC-PIM 神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Jetson AGX ORIN 配置 FGVC-PIM 神经网络

文章目录

  • Jetson AGX ORIN 配置 FGVC-PIM 神经网络
    • 配置 ORIN 环境
    • 创建 FGVC-PIM 虚拟环境
      • 安装 PyTorch
      • 安装 torchvision
      • 安装其他依赖包

配置 ORIN 环境

首先先配置 ORIN 的环境,可以参考这个链接:

Jetson AGX ORIN 初始化&配置CUDA&Anaconda&带CUDA的OpenCV

创建 FGVC-PIM 虚拟环境

终端输入命令:

conda create -n fgvc python=3.8
conda activate fgvc

即可创建名为 fgvc 的虚拟环境,之后需要向环境中添加需要的安装包。python 一定要安装 38 版本,因为安装 PyTorch 的时候需要对照版本进行安装。如果直接使用这个命令进行安装 pip install torch torchvision torchaudio,则会出现无法调用 CUDA 的问题。

安装 PyTorch

安装 PyTorch 之前先要查看一下 ORIN 的版本信息:

  • L4T:35.3.1
  • Jatpack:5.1.1

然后在官网里面下载安装包。网址如下:
PyTorch for Jetson

我的 ORIN 信息如上,选择对应的 python=3.8 系列,最终确定 PyTorch 版本为 1.12.0,进行下载。
如图所示:

在这里插入图片描述然后激活对应的虚拟环境,进行包的安装。

conda activate fgvc
pip install torch-1.12.0a0+2c916ef.nv22.3-cp38-cp38-linux_aarch64.whl 

显示成功安装后,进行 python 界面,测试是否可以导入,以及 CUDA 是否可用。出现如下结果说明一切正常,可以进行下一步 torchvision 安装。如下所示:

(fgvc) abc@ubuntu:~$ python
Python 3.8.19 (default, Mar 20 2024, 19:53:40) 
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.__version__
'1.12.0a0+2c916ef.nv22.3'
>>> torch.cuda.is_available()
True
>>> 

中间可能会出现一个小问题,显示没有 libopenblas-dev 东西,用如下命令进行安装即可解决:

sudo apt-get install libopenblas-dev

安装 torchvision

安装之前先运行以下命令:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev

在环境变量里面添加内容:

export CUDA_HOME=/usr/local/cuda-11.4
# 然后更新
source ~/.bashrc

再看这个对照表

在这里插入图片描述

使用 git clone 下载 torchvision 的对应安装代码。

git clone --branch v0.13.0 https://github.com/pytorch/vision torchvision

然后在虚拟环境终端里面输入:

cd torchvision
export BUILD_VERSION=v0.13.0

然后再输入:

python3 setup.py install --user

之后进行调试,还是会有问题,但是具体基本都是一些库需要下载,进行下载即可。
可以参考这个链接:
jetson agx orin 的pytorch、torchvision、tensorrt安装最全教程

# 下载 torchvision 时候报错 需要 numpy
Downloading https://files.pythonhosted.org/packages/51/fe/e4dab289c176ea4e13f97f11f281cc22d4a3b0add9883406db62d4f94d65/numpy-2.0.0b1.tar.gz#sha256=e0bb33a37d0d0b9a19cd41a093877f830e06bd4d989341b9792896cf08e629f7
Best match: numpy 2.0.0b1
Processing numpy-2.0.0b1.tar.gz
error: Couldn't find a setup script in /tmp/easy_install-di_cher0/numpy-2.0.0b1.tar.gz
# 下载 numpy 和 numpy 需要的其他库
(fgvc) abc@ubuntu:~/torchvision$ pip install certifi idna charset-normalizer numpy urllib3
# 参考上面的链接提前安装一些 torchvision 的依赖库

再运行之后问题解除
然后在 python 里面导入 torchvision,看是否有问题,结果如下,能出来 ‘v0.13.0’ 则可以继续安装其他依赖包:

(fgvc) be@ubuntu:~/torchvision$ python
Python 3.8.19 (default, Mar 20 2024, 19:53:40) 
[GCC 11.2.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> import torchvision
/home/be/torchvision/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: warn(f"Failed to load image Python extension: {e}")
/home/be/torchvision/torchvision/__init__.py:28: UserWarning: You are importing torchvision within its own root folder (/home/be/torchvision). This is not expected to work and may give errors. Please exit the torchvision project source and relaunch your python interpreter.warnings.warn(message.format(os.getcwd()))
>>> torch.__version__
'1.12.0a0+2c916ef.nv22.3'
>>> torchvision.__version__
'v0.13.0'
>>> 

安装其他依赖包

进入 pycharm,并在 Setting 设置好代码的虚拟环境之后,根据缺少的库的内容,使用 pip install 命令下载库。
需要的库及其命令如下,不需要找了,可以直接下载。

pip install numpy pandas matplotlib wandb psutil
pip install opencv-python
pip install scipy scikit-learn

如果下载中断,可以使用镜像源:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pandas

或者使用参数 –default-timeout

pip install --default-timeout=600 pandas

然后再运行训练数据集的命令,发现可以训练了(这个不打算训练,所以 Ctrl + c 强行中断了),配置结束!

在这里插入图片描述

这篇关于Jetson AGX ORIN 配置 FGVC-PIM 神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/838171

相关文章

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

沁恒CH32在MounRiver Studio上环境配置以及使用详细教程

目录 1.  RISC-V简介 2.  CPU架构现状 3.  MounRiver Studio软件下载 4.  MounRiver Studio软件安装 5.  MounRiver Studio软件介绍 6.  创建工程 7.  编译代码 1.  RISC-V简介         RISC就是精简指令集计算机(Reduced Instruction SetCom

log4j2相关配置说明以及${sys:catalina.home}应用

${sys:catalina.home} 等价于 System.getProperty("catalina.home") 就是Tomcat的根目录:  C:\apache-tomcat-7.0.77 <PatternLayout pattern="%d{yyyy-MM-dd HH:mm:ss} [%t] %-5p %c{1}:%L - %msg%n" /> 2017-08-10

DM8数据库安装后配置

1 前言 在上篇文章中,我们已经成功将库装好。在安装完成后,为了能够更好地满足应用需求和保障系统的安全稳定运行,通常需要进行一些基本的配置。下面是一些常见的配置项: 数据库服务注册:默认包含14个功能模块,将这些模块注册成服务后,可以更好的启动和管理这些功能;基本的实例参数配置:契合应用场景和发挥系统的最大性能;备份:有备无患;… 2 注册实例服务 注册了实例服务后,可以使用系统服务管理,