【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程(2)

本文主要是介绍【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【CS231n】斯坦福大学李飞飞视觉识别课程笔记

由官方授权的CS231n课程笔记翻译知乎专栏——智能单元,比较详细地翻译了课程笔记,我这里就是参考和总结。

在这里插入图片描述

【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程
Numpy

Numpy是Python中用于科学计算的核心库。它提供了高性能的多维数组对象,以及相关工具。

数组Arrays

一个numpy数组是一个由不同数值组成的网格。网格中的数据都是同一种数据类型,可以通过非负整型数的元组来访问。维度的数量被称为数组的阶,数组的大小是一个由整型数构成的元组,可以描述数组不同维度上的大小。

我们可以从列表创建数组,然后利用方括号访问其中的元素:

import numpy as npa = np.array([1, 2, 3])   # Create a rank 1 array
print(type(a))            # Prints "<class 'numpy.ndarray'>"
print(a.shape)            # Prints "(3,)"
print(a[0], a[1], a[2])   # Prints "1 2 3"
a[0] = 5                  # Change an element of the array
print(a)                  # Prints "[5, 2, 3]"b = np.array([[1,2,3],[4,5,6]])    # Create a rank 2 array
print(b.shape)                     # Prints "(2, 3)"
print(b[0, 0], b[0, 1], b[1, 0])   # Prints "1 2 4"

Numpy还提供了很多其他创建数组的方法:

import numpy as npa = np.zeros((2,2))   # Create an array of all zeros
print(a)              # Prints "[[ 0.  0.]#          [ 0.  0.]]"b = np.ones((1,2))    # Create an array of all ones
print(b)              # Prints "[[ 1.  1.]]"c = np.full((2,2), 7)  # Create a constant array
print(c)               # Prints "[[ 7.  7.]#          [ 7.  7.]]"d = np.eye(2)         # Create a 2x2 identity matrix
print(d)              # Prints "[[ 1.  0.]#          [ 0.  1.]]"e = np.random.random((2,2))  # Create an array filled with random values
print(e)                     # Might print "[[ 0.91940167  0.08143941]#               [ 0.68744134  0.87236687]]"

其他数组相关方法,请查看文档。

访问数组

Numpy提供了多种访问数组的方法。

切片:和Python列表类似,numpy数组可以使用切片语法。因为数组可以是多维的,所以你必须为每个维度指定好切片。

import numpy as np# Create the following rank 2 array with shape (3, 4)
# [[ 1  2  3  4]
#  [ 5  6  7  8]
#  [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])# Use slicing to pull out the subarray consisting of the first 2 rows
# and columns 1 and 2; b is the following array of shape (2, 2):
# [[2 3]
#  [6 7]]
b = a[:2, 1:3]# A slice of an array is a view into the same data, so modifying it
# will modify the original array.
print(a[0, 1])   # Prints "2"
b[0, 0] = 77     # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1])   # Prints "77"

你可以同时使用整型和切片语法来访问数组。但是,这样做会产生一个比原数组低阶的新数组。需要注意的是,这里和MATLAB中的情况是不同的:

import numpy as np# Create the following rank 2 array with shape (3, 4)
# [[ 1  2  3  4]
#  [ 5  6  7  8]
#  [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])# Two ways of accessing the data in the middle row of the array.
# Mixing integer indexing with slices yields an array of lower rank,
# while using only slices yields an array of the same rank as the
# original array:
row_r1 = a[1, :]    # Rank 1 view of the second row of a
row_r2 = a[1:2, :]  # Rank 2 view of the second row of a
print(row_r1, row_r1.shape)  # Prints "[5 6 7 8] (4,)"
print(row_r2, row_r2.shape)  # Prints "[[5 6 7 8]] (1, 4)"# We can make the same distinction when accessing columns of an array:
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape)  # Prints "[ 2  6 10] (3,)"
print(col_r2, col_r2.shape)  # Prints "[[ 2]#          [ 6]#          [10]] (3, 1)"

整型数组访问:当我们使用切片语法访问数组时,得到的总是原数组的一个子集。整型数组访问允许我们利用其它数组的数据构建一个新的数组:

import numpy as npa = np.array([[1,2], [3, 4], [5, 6]])# An example of integer array indexing.
# The returned array will have shape (3,) and
print(a[[0, 1, 2], [0, 1, 0]])  # Prints "[1 4 5]"# The above example of integer array indexing is equivalent to this:
print(np.array([a[0, 0], a[1, 1], a[2, 0]]))  # Prints "[1 4 5]"# When using integer array indexing, you can reuse the same
# element from the source array:
print(a[[0, 0], [1, 1]])  # Prints "[2 2]"# Equivalent to the previous integer array indexing example
print(np.array([a[0, 1], a[0, 1]]))  # Prints "[2 2]"

整型数组访问语法还有个有用的技巧,可以用来选择或者更改矩阵中每行中的一个元素:

import numpy as np# Create a new array from which we will select elements
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])print(a)  # prints "array([[ 1,  2,  3],#                [ 4,  5,  6],#                [ 7,  8,  9],#                [10, 11, 12]])"# Create an array of indices
b = np.array([0, 2, 0, 1])# Select one element from each row of a using the indices in b
print(a[np.arange(4), b])  # Prints "[ 1  6  7 11]"# Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10print(a)  # prints "array([[11,  2,  3],#                [ 4,  5, 16],#                [17,  8,  9],#                [10, 21, 12]])

布尔型数组访问:布尔型数组访问可以让你选择数组中任意元素。通常,这种访问方式用于选取数组中满足某些条件的元素,举例如下:

import numpy as npa = np.array([[1,2], [3, 4], [5, 6]])bool_idx = (a > 2)   # Find the elements of a that are bigger than 2;# this returns a numpy array of Booleans of the same# shape as a, where each slot of bool_idx tells# whether that element of a is > 2.print(bool_idx)      # Prints "[[False False]#          [ True  True]#          [ True  True]]"# We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print(a[bool_idx])  # Prints "[3 4 5 6]"# We can do all of the above in a single concise statement:
print(a[a > 2])     # Prints "[3 4 5 6]"

为了教程的简介,有很多数组访问的细节我们没有详细说明,可以查看文档。

数据类型

每个Numpy数组都是数据类型相同的元素组成的网格。Numpy提供了很多的数据类型用于创建数组。当你创建数组的时候,Numpy会尝试猜测数组的数据类型,你也可以通过参数直接指定数据类型,例子如下:

import numpy as npx = np.array([1, 2])   # Let numpy choose the datatype
print(x.dtype)         # Prints "int64"x = np.array([1.0, 2.0])   # Let numpy choose the datatype
print(x.dtype)             # Prints "float64"x = np.array([1, 2], dtype=np.int64)   # Force a particular datatype
print(x.dtype)                         # Prints "int64"

更多细节查看文档。

数组计算

基本数学计算函数会对数组中元素逐个进行计算,既可以利用操作符重载,也可以使用函数方式:

import numpy as npx = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)# Elementwise sum; both produce the array
# [[ 6.0  8.0]
#  [10.0 12.0]]
print(x + y)
print(np.add(x, y))# Elementwise difference; both produce the array
# [[-4.0 -4.0]
#  [-4.0 -4.0]]
print(x - y)
print(np.subtract(x, y))# Elementwise product; both produce the array
# [[ 5.0 12.0]
#  [21.0 32.0]]
print(x * y)
print(np.multiply(x, y))# Elementwise division; both produce the array
# [[ 0.2         0.33333333]
#  [ 0.42857143  0.5       ]]
print(x / y)
print(np.divide(x, y))# Elementwise square root; produces the array
# [[ 1.          1.41421356]
#  [ 1.73205081  2.        ]]
print(np.sqrt(x))

请注意,与MATLAB不同,* 是元素乘法,而不是矩阵乘法。我们使用该dot函数来计算向量的内积,将向量乘以矩阵,并乘以矩阵。dot既可以作为numpy模块中的函数,也可以作为数组对象的实例方法:

import numpy as npx = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])v = np.array([9,10])
w = np.array([11, 12])# Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v, w))# Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v))# Matrix / matrix product; both produce the rank 2 array
# [[19 22]
#  [43 50]]
print(x.dot(y))
print(np.dot(x, y))

Numpy提供了很多计算数组的函数,其中最常用的一个是sum

import numpy as npx = np.array([[1,2],[3,4]])print(np.sum(x))  # Compute sum of all elements; prints "10"
print(np.sum(x, axis=0))  # Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1))  # Compute sum of each row; prints "[3 7]"

想要了解更多函数,可以查看文档。

除了计算,我们还常常改变数组或者操作其中的元素。其中将矩阵转置是常用的一个,在Numpy中,使用T来转置矩阵:

import numpy as npx = np.array([[1,2], [3,4]])
print(x)    # Prints "[[1 2]#          [3 4]]"
print(x.T)  # Prints "[[1 3]#          [2 4]]"# Note that taking the transpose of a rank 1 array does nothing:
v = np.array([1,2,3])
print(v)    # Prints "[1 2 3]"
print(v.T)  # Prints "[1 2 3]"

Numpy还提供了更多操作数组的方法,请查看文档。

广播Broadcasting

广播是一种强有力的机制,它让Numpy可以让不同大小的矩阵在一起进行数学计算。我们常常会有一个小的矩阵和一个大的矩阵,然后我们会需要用小的矩阵对大的矩阵做一些计算。

举个例子,如果我们想要把一个向量加到矩阵的每一行,我们可以这样做:

import numpy as np# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = np.empty_like(x)   # Create an empty matrix with the same shape as x# Add the vector v to each row of the matrix x with an explicit loop
for i in range(4):y[i, :] = x[i, :] + v# Now y is the following
# [[ 2  2  4]
#  [ 5  5  7]
#  [ 8  8 10]
#  [11 11 13]]
print(y)

这样是行得通的,但是当x矩阵非常大,利用循环来计算就会变得很慢很慢。我们可以换一种思路:

import numpy as np# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
vv = np.tile(v, (4, 1))   # Stack 4 copies of v on top of each other
print(vv)                 # Prints "[[1 0 1]#          [1 0 1]#          [1 0 1]#          [1 0 1]]"
y = x + vv  # Add x and vv elementwise
print(y)  # Prints "[[ 2  2  4]#          [ 5  5  7]#          [ 8  8 10]#          [11 11 13]]"

Numpy广播机制可以让我们不用创建vv,就能直接运算,看看下面例子:

import numpy as np# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v  # Add v to each row of x using broadcasting
print(y)  # Prints "[[ 2  2  4]#          [ 5  5  7]#          [ 8  8 10]#          [11 11 13]]"

对两个数组使用广播机制要遵守下列规则:

  1. 如果数组的秩不同,使用1来将秩较小的数组进行扩展,直到两个数组的尺寸的长度都一样。
  2. 如果两个数组在某个维度上的长度是一样的,或者其中一个数组在该维度上长度为1,那么我们就说这两个数组在该维度上是相容的。
  3. 如果两个数组在所有维度上都是相容的,他们就能使用广播。
  4. 如果两个输入数组的尺寸不同,那么注意其中较大的那个尺寸。因为广播之后,两个数组的尺寸将和那个较大的尺寸一样。
  5. 在任何一个维度上,如果一个数组的长度为1,另一个数组长度大于1,那么在该维度上,就好像是对第一个数组进行了复制。

如果上述解释看不明白,可以读一读文档和这个解释。译者注:强烈推荐阅读文档中的例子。

支持广播机制的函数是全局函数。哪些是全局函数可以在文档中查找。

下面是一些广播机制的使用:

import numpy as np# Compute outer product of vectors
v = np.array([1,2,3])  # v has shape (3,)
w = np.array([4,5])    # w has shape (2,)
# To compute an outer product, we first reshape v to be a column
# vector of shape (3, 1); we can then broadcast it against w to yield
# an output of shape (3, 2), which is the outer product of v and w:
# [[ 4  5]
#  [ 8 10]
#  [12 15]]
print(np.reshape(v, (3, 1)) * w)# Add a vector to each row of a matrix
x = np.array([[1,2,3], [4,5,6]])
# x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
# giving the following matrix:
# [[2 4 6]
#  [5 7 9]]
print(x + v)# Add a vector to each column of a matrix
# x has shape (2, 3) and w has shape (2,).
# If we transpose x then it has shape (3, 2) and can be broadcast
# against w to yield a result of shape (3, 2); transposing this result
# yields the final result of shape (2, 3) which is the matrix x with
# the vector w added to each column. Gives the following matrix:
# [[ 5  6  7]
#  [ 9 10 11]]
print((x.T + w).T)
# Another solution is to reshape w to be a column vector of shape (2, 1);
# we can then broadcast it directly against x to produce the same
# output.
print(x + np.reshape(w, (2, 1)))# Multiply a matrix by a constant:
# x has shape (2, 3). Numpy treats scalars as arrays of shape ();
# these can be broadcast together to shape (2, 3), producing the
# following array:
# [[ 2  4  6]
#  [ 8 10 12]]
print(x * 2)

广播机制能够让你的代码更简洁更迅速,能够用的时候请尽量使用!

【CS231n】斯坦福大学李飞飞视觉识别课程笔记(一):Python Numpy教程(1)
【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程(2)
【CS231n】斯坦福大学李飞飞视觉识别课程笔记(三):Python Numpy教程(3)

这篇关于【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837658

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(