本文主要是介绍【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
【CS231n】斯坦福大学李飞飞视觉识别课程笔记
由官方授权的CS231n课程笔记翻译知乎专栏——智能单元,比较详细地翻译了课程笔记,我这里就是参考和总结。
【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程
Numpy
Numpy是Python中用于科学计算的核心库。它提供了高性能的多维数组对象,以及相关工具。
数组Arrays
一个numpy数组是一个由不同数值组成的网格。网格中的数据都是同一种数据类型,可以通过非负整型数的元组来访问。维度的数量被称为数组的阶,数组的大小是一个由整型数构成的元组,可以描述数组不同维度上的大小。
我们可以从列表创建数组,然后利用方括号访问其中的元素:
import numpy as npa = np.array([1, 2, 3]) # Create a rank 1 array
print(type(a)) # Prints "<class 'numpy.ndarray'>"
print(a.shape) # Prints "(3,)"
print(a[0], a[1], a[2]) # Prints "1 2 3"
a[0] = 5 # Change an element of the array
print(a) # Prints "[5, 2, 3]"b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array
print(b.shape) # Prints "(2, 3)"
print(b[0, 0], b[0, 1], b[1, 0]) # Prints "1 2 4"
Numpy还提供了很多其他创建数组的方法:
import numpy as npa = np.zeros((2,2)) # Create an array of all zeros
print(a) # Prints "[[ 0. 0.]# [ 0. 0.]]"b = np.ones((1,2)) # Create an array of all ones
print(b) # Prints "[[ 1. 1.]]"c = np.full((2,2), 7) # Create a constant array
print(c) # Prints "[[ 7. 7.]# [ 7. 7.]]"d = np.eye(2) # Create a 2x2 identity matrix
print(d) # Prints "[[ 1. 0.]# [ 0. 1.]]"e = np.random.random((2,2)) # Create an array filled with random values
print(e) # Might print "[[ 0.91940167 0.08143941]# [ 0.68744134 0.87236687]]"
其他数组相关方法,请查看文档。
访问数组
Numpy提供了多种访问数组的方法。
切片:和Python列表类似,numpy数组可以使用切片语法。因为数组可以是多维的,所以你必须为每个维度指定好切片。
import numpy as np# Create the following rank 2 array with shape (3, 4)
# [[ 1 2 3 4]
# [ 5 6 7 8]
# [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])# Use slicing to pull out the subarray consisting of the first 2 rows
# and columns 1 and 2; b is the following array of shape (2, 2):
# [[2 3]
# [6 7]]
b = a[:2, 1:3]# A slice of an array is a view into the same data, so modifying it
# will modify the original array.
print(a[0, 1]) # Prints "2"
b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1]
print(a[0, 1]) # Prints "77"
你可以同时使用整型和切片语法来访问数组。但是,这样做会产生一个比原数组低阶的新数组。需要注意的是,这里和MATLAB中的情况是不同的:
import numpy as np# Create the following rank 2 array with shape (3, 4)
# [[ 1 2 3 4]
# [ 5 6 7 8]
# [ 9 10 11 12]]
a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])# Two ways of accessing the data in the middle row of the array.
# Mixing integer indexing with slices yields an array of lower rank,
# while using only slices yields an array of the same rank as the
# original array:
row_r1 = a[1, :] # Rank 1 view of the second row of a
row_r2 = a[1:2, :] # Rank 2 view of the second row of a
print(row_r1, row_r1.shape) # Prints "[5 6 7 8] (4,)"
print(row_r2, row_r2.shape) # Prints "[[5 6 7 8]] (1, 4)"# We can make the same distinction when accessing columns of an array:
col_r1 = a[:, 1]
col_r2 = a[:, 1:2]
print(col_r1, col_r1.shape) # Prints "[ 2 6 10] (3,)"
print(col_r2, col_r2.shape) # Prints "[[ 2]# [ 6]# [10]] (3, 1)"
整型数组访问:当我们使用切片语法访问数组时,得到的总是原数组的一个子集。整型数组访问允许我们利用其它数组的数据构建一个新的数组:
import numpy as npa = np.array([[1,2], [3, 4], [5, 6]])# An example of integer array indexing.
# The returned array will have shape (3,) and
print(a[[0, 1, 2], [0, 1, 0]]) # Prints "[1 4 5]"# The above example of integer array indexing is equivalent to this:
print(np.array([a[0, 0], a[1, 1], a[2, 0]])) # Prints "[1 4 5]"# When using integer array indexing, you can reuse the same
# element from the source array:
print(a[[0, 0], [1, 1]]) # Prints "[2 2]"# Equivalent to the previous integer array indexing example
print(np.array([a[0, 1], a[0, 1]])) # Prints "[2 2]"
整型数组访问语法还有个有用的技巧,可以用来选择或者更改矩阵中每行中的一个元素:
import numpy as np# Create a new array from which we will select elements
a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])print(a) # prints "array([[ 1, 2, 3],# [ 4, 5, 6],# [ 7, 8, 9],# [10, 11, 12]])"# Create an array of indices
b = np.array([0, 2, 0, 1])# Select one element from each row of a using the indices in b
print(a[np.arange(4), b]) # Prints "[ 1 6 7 11]"# Mutate one element from each row of a using the indices in b
a[np.arange(4), b] += 10print(a) # prints "array([[11, 2, 3],# [ 4, 5, 16],# [17, 8, 9],# [10, 21, 12]])
布尔型数组访问:布尔型数组访问可以让你选择数组中任意元素。通常,这种访问方式用于选取数组中满足某些条件的元素,举例如下:
import numpy as npa = np.array([[1,2], [3, 4], [5, 6]])bool_idx = (a > 2) # Find the elements of a that are bigger than 2;# this returns a numpy array of Booleans of the same# shape as a, where each slot of bool_idx tells# whether that element of a is > 2.print(bool_idx) # Prints "[[False False]# [ True True]# [ True True]]"# We use boolean array indexing to construct a rank 1 array
# consisting of the elements of a corresponding to the True values
# of bool_idx
print(a[bool_idx]) # Prints "[3 4 5 6]"# We can do all of the above in a single concise statement:
print(a[a > 2]) # Prints "[3 4 5 6]"
为了教程的简介,有很多数组访问的细节我们没有详细说明,可以查看文档。
数据类型
每个Numpy数组都是数据类型相同的元素组成的网格。Numpy提供了很多的数据类型用于创建数组。当你创建数组的时候,Numpy会尝试猜测数组的数据类型,你也可以通过参数直接指定数据类型,例子如下:
import numpy as npx = np.array([1, 2]) # Let numpy choose the datatype
print(x.dtype) # Prints "int64"x = np.array([1.0, 2.0]) # Let numpy choose the datatype
print(x.dtype) # Prints "float64"x = np.array([1, 2], dtype=np.int64) # Force a particular datatype
print(x.dtype) # Prints "int64"
更多细节查看文档。
数组计算
基本数学计算函数会对数组中元素逐个进行计算,既可以利用操作符重载,也可以使用函数方式:
import numpy as npx = np.array([[1,2],[3,4]], dtype=np.float64)
y = np.array([[5,6],[7,8]], dtype=np.float64)# Elementwise sum; both produce the array
# [[ 6.0 8.0]
# [10.0 12.0]]
print(x + y)
print(np.add(x, y))# Elementwise difference; both produce the array
# [[-4.0 -4.0]
# [-4.0 -4.0]]
print(x - y)
print(np.subtract(x, y))# Elementwise product; both produce the array
# [[ 5.0 12.0]
# [21.0 32.0]]
print(x * y)
print(np.multiply(x, y))# Elementwise division; both produce the array
# [[ 0.2 0.33333333]
# [ 0.42857143 0.5 ]]
print(x / y)
print(np.divide(x, y))# Elementwise square root; produces the array
# [[ 1. 1.41421356]
# [ 1.73205081 2. ]]
print(np.sqrt(x))
请注意,与MATLAB不同,* 是元素乘法,而不是矩阵乘法。我们使用该dot函数来计算向量的内积,将向量乘以矩阵,并乘以矩阵。dot既可以作为numpy模块中的函数,也可以作为数组对象的实例方法:
import numpy as npx = np.array([[1,2],[3,4]])
y = np.array([[5,6],[7,8]])v = np.array([9,10])
w = np.array([11, 12])# Inner product of vectors; both produce 219
print(v.dot(w))
print(np.dot(v, w))# Matrix / vector product; both produce the rank 1 array [29 67]
print(x.dot(v))
print(np.dot(x, v))# Matrix / matrix product; both produce the rank 2 array
# [[19 22]
# [43 50]]
print(x.dot(y))
print(np.dot(x, y))
Numpy提供了很多计算数组的函数,其中最常用的一个是sum:
import numpy as npx = np.array([[1,2],[3,4]])print(np.sum(x)) # Compute sum of all elements; prints "10"
print(np.sum(x, axis=0)) # Compute sum of each column; prints "[4 6]"
print(np.sum(x, axis=1)) # Compute sum of each row; prints "[3 7]"
想要了解更多函数,可以查看文档。
除了计算,我们还常常改变数组或者操作其中的元素。其中将矩阵转置是常用的一个,在Numpy中,使用T来转置矩阵:
import numpy as npx = np.array([[1,2], [3,4]])
print(x) # Prints "[[1 2]# [3 4]]"
print(x.T) # Prints "[[1 3]# [2 4]]"# Note that taking the transpose of a rank 1 array does nothing:
v = np.array([1,2,3])
print(v) # Prints "[1 2 3]"
print(v.T) # Prints "[1 2 3]"
Numpy还提供了更多操作数组的方法,请查看文档。
广播Broadcasting
广播是一种强有力的机制,它让Numpy可以让不同大小的矩阵在一起进行数学计算。我们常常会有一个小的矩阵和一个大的矩阵,然后我们会需要用小的矩阵对大的矩阵做一些计算。
举个例子,如果我们想要把一个向量加到矩阵的每一行,我们可以这样做:
import numpy as np# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = np.empty_like(x) # Create an empty matrix with the same shape as x# Add the vector v to each row of the matrix x with an explicit loop
for i in range(4):y[i, :] = x[i, :] + v# Now y is the following
# [[ 2 2 4]
# [ 5 5 7]
# [ 8 8 10]
# [11 11 13]]
print(y)
这样是行得通的,但是当x矩阵非常大,利用循环来计算就会变得很慢很慢。我们可以换一种思路:
import numpy as np# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
vv = np.tile(v, (4, 1)) # Stack 4 copies of v on top of each other
print(vv) # Prints "[[1 0 1]# [1 0 1]# [1 0 1]# [1 0 1]]"
y = x + vv # Add x and vv elementwise
print(y) # Prints "[[ 2 2 4]# [ 5 5 7]# [ 8 8 10]# [11 11 13]]"
Numpy广播机制可以让我们不用创建vv,就能直接运算,看看下面例子:
import numpy as np# We will add the vector v to each row of the matrix x,
# storing the result in the matrix y
x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]])
v = np.array([1, 0, 1])
y = x + v # Add v to each row of x using broadcasting
print(y) # Prints "[[ 2 2 4]# [ 5 5 7]# [ 8 8 10]# [11 11 13]]"
对两个数组使用广播机制要遵守下列规则:
- 如果数组的秩不同,使用1来将秩较小的数组进行扩展,直到两个数组的尺寸的长度都一样。
- 如果两个数组在某个维度上的长度是一样的,或者其中一个数组在该维度上长度为1,那么我们就说这两个数组在该维度上是相容的。
- 如果两个数组在所有维度上都是相容的,他们就能使用广播。
- 如果两个输入数组的尺寸不同,那么注意其中较大的那个尺寸。因为广播之后,两个数组的尺寸将和那个较大的尺寸一样。
- 在任何一个维度上,如果一个数组的长度为1,另一个数组长度大于1,那么在该维度上,就好像是对第一个数组进行了复制。
如果上述解释看不明白,可以读一读文档和这个解释。译者注:强烈推荐阅读文档中的例子。
支持广播机制的函数是全局函数。哪些是全局函数可以在文档中查找。
下面是一些广播机制的使用:
import numpy as np# Compute outer product of vectors
v = np.array([1,2,3]) # v has shape (3,)
w = np.array([4,5]) # w has shape (2,)
# To compute an outer product, we first reshape v to be a column
# vector of shape (3, 1); we can then broadcast it against w to yield
# an output of shape (3, 2), which is the outer product of v and w:
# [[ 4 5]
# [ 8 10]
# [12 15]]
print(np.reshape(v, (3, 1)) * w)# Add a vector to each row of a matrix
x = np.array([[1,2,3], [4,5,6]])
# x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3),
# giving the following matrix:
# [[2 4 6]
# [5 7 9]]
print(x + v)# Add a vector to each column of a matrix
# x has shape (2, 3) and w has shape (2,).
# If we transpose x then it has shape (3, 2) and can be broadcast
# against w to yield a result of shape (3, 2); transposing this result
# yields the final result of shape (2, 3) which is the matrix x with
# the vector w added to each column. Gives the following matrix:
# [[ 5 6 7]
# [ 9 10 11]]
print((x.T + w).T)
# Another solution is to reshape w to be a column vector of shape (2, 1);
# we can then broadcast it directly against x to produce the same
# output.
print(x + np.reshape(w, (2, 1)))# Multiply a matrix by a constant:
# x has shape (2, 3). Numpy treats scalars as arrays of shape ();
# these can be broadcast together to shape (2, 3), producing the
# following array:
# [[ 2 4 6]
# [ 8 10 12]]
print(x * 2)
广播机制能够让你的代码更简洁更迅速,能够用的时候请尽量使用!
【CS231n】斯坦福大学李飞飞视觉识别课程笔记(一):Python Numpy教程(1)
【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程(2)
【CS231n】斯坦福大学李飞飞视觉识别课程笔记(三):Python Numpy教程(3)
这篇关于【CS231n】斯坦福大学李飞飞视觉识别课程笔记(二):Python Numpy教程(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!