深度学习论文笔记(六)--- FCN-2015年(Fully Convolutional Networks for Semantic Segmentation)

本文主要是介绍深度学习论文笔记(六)--- FCN-2015年(Fully Convolutional Networks for Semantic Segmentation),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习论文笔记(六)--- FCN 全卷积网络

 

FullyConvolutional Networks for Semantic Segmentation

Author:J Long , E Shelhamer, T Darrell

Year: 2015

 

1、  导引

 

通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature map)映射成一个固定长度的特征向量。以AlexNet为代表的经典CNN结构适合于图像级分类和回归任务,因为它们最后都期望得到整个输入图像的一个数值描述(概率),比如AlexNet的ImageNet模型输出一个1000维的向量表示输入图像属于每一类的概率(softmax归一化)。

而要做SemanticSegmentation(语义分割),希望能够直接输出一幅分割图像结果,所以就有了本篇FCN网络的提出。

 

 

 

2、模型解读

 

①FCN将传统CNN中的全连接层转化成一个个的卷积层。如下图所示,在传统的CNN结构中,前5层是卷积层,第6层和第7层分别是一个长度为4096的一维向量,第8层是长度为1000的一维向量,分别对应1000个类别的概率。FCN将这3层表示为卷积层卷积核的大小(宽,高,通道数)分别为(1,1,4096)、(1,1,4096)、(1,1,1000)。所有的层都是卷积层,故称为全卷积网络。

 

②但是,经过多次卷积(还有pooling)以后,得到的图像越来越小,分辨率越来越低。为了从这个分辨率低的粗略图像恢复到原图的分辨率,FCN使用了增采样操作。这个增采样是通过反卷积来实现的(deconvolution),文中用的反卷积操作很简单,后来有其他人就在反卷积这一步上做了进一步优化,使得分割结果更为准确。

 

③对第5层的输出(32倍放大)反卷积到原图大小,得到的结果还是不够精确,还是有细节内容丢失了。于是作者采用skiplayer的方法,将第4层的输出和第3层的输出也依次反卷积,分别需要16倍和8倍上采样,结果就精细一些了。下图是这个卷积和反卷积上采样的过程:

我们来把位置稍微调整一下利于理解:

 

在浅层处减小upsampling的步长,得到的finelayer 和 高层得到的coarselayer做融合,然后再upsampling得到输出。这种做法兼顾local和global信息,即文中说的combiningwhat and where,取得了不错的效果提升。FCN-32s为59.4,FCN-16s提升到了62.4,FCN-8s提升到62.7。可以看出效果还是很明显的。

 

3、 创新点分析

①由于没有全连接层的存在,所以输入图像的尺寸要求并不固定了。这个原因是因为全连接层是一个矩阵乘法的操作,可以自己去想一想。

 

②实现的是对每个像素点的分类预测:

Pixel-wiseprediction

 

之所以能做到这样,是因为卷积层的输出的结果是datamap,而不是一个向量!经过反卷积后得到与原图一样大小的1000层heatmap,每一层代表一个类,然后观察每个位置的像素,在哪一层它这个点对应的值最大,就认为这个像素点属于这一层的类,

 

 

 

就比如图中点猫那个位置的点,在tabby cat这个类的heatmap上表现的值很高,所以认为那一坨像素点是属于tabby cat这个类的。

从而这样对每个像素点进行分类,最后输出的就是分割好的图像。

 

 

 

 

 

 

 

 

 

 

 

这篇关于深度学习论文笔记(六)--- FCN-2015年(Fully Convolutional Networks for Semantic Segmentation)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837460

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操