0201线性方程组和矩阵-矩阵及其运算-线性代数

2024-03-23 05:28

本文主要是介绍0201线性方程组和矩阵-矩阵及其运算-线性代数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一、线性方程组
    • 二、矩阵的定义
    • 结语

一、线性方程组

设有 n 个未知数 m n个未知数m n个未知数m个方程的线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m , \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,\\ \end{cases} a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,am1x1+am2x2++amnxn=bm,
其中 a i j 是第 i 个方程的第 j a_{ij}是第i个方程的第j aij是第i个方程的第j个未知数的系数, b i 是第 i b_i是第i bi是第i个方程的常数项, i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n i=1,2,\cdots,m;\quad j=1,2,\cdots,n i=1,2,,m;j=1,2,,n

当常数项 b 1 , b 2 , ⋯ , b n b_1,b_2,\cdots,b_n b1,b2,,bn不全为零时,线性方程组(1)叫做 n n n元非齐次线性方程组,当 b 1 , b 2 , ⋯ , b n b_1,b_2,\cdots,b_n b1,b2,,bn全为零时,(1)式称为 n n n元其次线性方程组。

对于线性方程组需要讨论以下问题:

  1. 它是否有解?
  2. 在有解时,它是否唯一?
  3. 如果有多个解,如何求出它的所有解?

对于线性方程组(1)上述问题的答案取决于它的 m × n 个系数 a i j ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) m\times n个系数a_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n) m×n个系数aij(i=1,2,,m;j=1,2,,n)和右端的常数项 b 1 , b 2 , ⋯ , b n b_1,b_2,\cdots,b_n b1,b2,,bn所构成的 m 行 n + 1 m行n+1 mn+1列矩形数表:
a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}&b_1\\ a_{21}&a_{22}&\cdots&a_{2n}&b_2\\ \vdots&\vdots&&\vdots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}&b_m\\ \end{matrix} a11a21am1a12a22am2a1na2namnb1b2bm
这里横排称为行,竖排称为列;对于齐次线性方程相应问题的答案完全取决于他的 m × n 个系数 a i j ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n ) m\times n个系数a_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n) m×n个系数aij(i=1,2,,m;j=1,2,,n)所构成的 m 行 n 列 m行n列 mn矩形数表:
a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}\\ \end{matrix} a11a21am1a12a22am2a1na2namn

二、矩阵的定义

定义1 由 m × n m\times n m×n个数 a i j ( i = 1 , 2 , ⋯ , n ; j = 1 , 2 , ⋯ , n ) a_{ij}(i=1,2,\cdots,n;j=1,2,\cdots,n) aij(i=1,2,,n;j=1,2,,n)排成的 m m m n n n列的数表
a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}\\ \end{matrix} a11a21am1a12a22am2a1na2namn
称为 m 行 n 列 m行n列 mn矩阵,简称 m × n m\times n m×n矩阵,记作
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ) A=\begin{pmatrix} a_{11}&a_{12}&\cdots&a_{1n}\cr a_{21}&a_{22}&\cdots&a_{2n}\cr \vdots&\vdots&&\vdots\cr a_{m1}&a_{m2}&\cdots&a_{mn}\cr \end{pmatrix} A= a11a21am1a12a22am2a1na2namn
m × n m\times n m×n个数称为矩阵A的元素,简称为元,数 a i j a_{ij} aij位于矩阵A的第i行第j列,称为矩阵A的 ( i , j ) (i,j) (i,j)元,以数 a i j 为 ( i , j ) a_{ij}为(i,j) aij(i,j)元的矩阵简记作 a i j 或者 ( a i j ) m × n a_{ij}或者(a_{ij})_{m\times n} aij或者(aij)m×n, m × n m\times n m×n阶矩阵也记作 A m × n A_{m\times n} Am×n

元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。

**tips:**如无特殊说明,都为实矩阵。

行数和列数都等于 n n n的矩阵称为 n n n阶矩阵或 n n n阶方阵。 n 阶矩阵也记作 A n n阶矩阵也记作A_n n阶矩阵也记作An

只有一行的矩阵 A = ( a 1 a 2 ⋯ a n ) A=(a_1\quad a_2\quad \cdots\quad a_n) A=(a1a2an)称为行矩阵,又称行向量。只有一列的矩阵
B = ( b 1 b 2 ⋮ b m ) B=\begin{pmatrix} b_1\cr b_2\cr \vdots\cr b_m \end{pmatrix} B= b1b2bm
称为列矩阵,又称列向量。

两个矩阵行数相等、列数也相等时,就称它们是同型矩阵。如果 A = ( a i j ) 与 B = ( b i j ) A=(a_{ij})与B=(b_{ij}) A=(aij)B=(bij)是同行矩阵,并且它们的元素相等,即

a i j = b i j ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ n ) a_{ij}=b_{ij}(i=1,2,\cdots,m;j=1,2,\cdots n) aij=bij(i=1,2,,m;j=1,2,n)

那么就称矩阵A和矩阵B相等,记作

A = B A=B A=B

元素都为零的矩阵称为零矩阵,记作O.

tips:不同型的零矩阵是不同的。

对于非齐次线性方程组:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m , \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,\\ \end{cases} a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,am1x1+am2x2++amnxn=bm,
有如下几个矩阵:
A = ( a i j ) x = ( x 1 x 2 ⋮ x n ) b = ( b 1 b 2 ⋮ b m ) B = ( a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m ) A=(a_{ij})\\ x=\begin{pmatrix} x_1\cr x_2\cr \vdots\\ x_n\\ \end{pmatrix}\\ b=\begin{pmatrix} b_1\cr b_2\cr \vdots\\ b_m\\ \end{pmatrix}\\ B=\begin{pmatrix} a_{11}&a_{12}&\cdots&a_{1n}&b_1\\ a_{21}&a_{22}&\cdots&a_{2n}&b_2\\ \vdots&\vdots&&\vdots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}&b_m\\ \end{pmatrix} A=(aij)x= x1x2xn b= b1b2bm B= a11a21am1a12a22am2a1na2namnb1b2bm
其中A成为系数矩阵,x成为未知数矩阵,b成为常数项矩阵,B成为增广矩阵。

例2 某长向三个商店(编号1,2,3)发送四种产品(编号一、二、三、四)的数量可列成矩阵
行为商店编号,列为产品编号 A = ( a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 34 a 31 a 32 a 33 a 34 ) 行为商店编号,列为产品编号\\ A=\begin{pmatrix} a_{11}&a_{12}&a_{13}&a_{14}\\ a_{21}&a_{22}&a_{23}&a_{34}\\ a_{31}&a_{32}&a_{33}&a_{34}\\ \end{pmatrix} 行为商店编号,列为产品编号A= a11a21a31a12a22a32a13a23a33a14a34a34
其中 a i j a_{ij} aij为工厂向第 i i i家商店发送的第 j j j种商品。

这四种商品的单价即单件质量也可列成矩阵
行表示产品编号,列表示(单价、单件质量) A = ( b 11 b 12 b 21 b 22 b 31 b 32 b 41 b 42 ) 行表示产品编号,列表示(单价、单件质量)\\ A=\begin{pmatrix} b_{11}&b_{12}\\ b_{21}&b_{22}\\ b_{31}&b_{32}\\ b_{41}&b_{42}\\ \end{pmatrix} 行表示产品编号,列表示(单价、单件质量)A= b11b21b31b41b12b22b32b42
其中 b i 1 b_{i1} bi1为第 i i i种商品的单价, b i 2 b_{i2} bi2表示第 i i i种商品的单件质量。

例3 四个城市间的单向航线如图2.1所示,若令
a i j = { 1 , 从市到 j 市有 1 条单向航线, 0 , 从市到 j 市没有单向航线, a_{ij}=\begin{cases} 1,从市到j市有1条单向航线,\\ 0,从市到j市没有单向航线,\\ \end{cases} aij={1,从市到j市有1条单向航线,0,从市到j市没有单向航线,

则图2.1可用矩阵表示为

在这里插入图片描述

则图 2.1 可用矩阵表示为 ( 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 ) 则图2.1可用矩阵表示为\\ \begin{pmatrix} 0&1&1&1\\ 1&0&0&0\\ 0&1&0&0\\ 1&0&1&0\\ \end{pmatrix} 则图2.1可用矩阵表示为 0101101010011000
一般地,若干个点之间的单向通道都可用这样的矩阵表示。

例4 n n n个变量 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,,xn m m m个变量 y 1 , y 2 , ⋯ , y m y_1,y_2,\cdots,y_m y1,y2,,ym之间的关系式
{ y 1 = a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n , y 2 = a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n , ⋯ ⋯ ⋯ y m = a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n \begin{cases} y_1=a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n,\\ y_2=a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n,\\ \cdots\cdots\cdots\\ y_m=a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n\\ \end{cases} y1=a11x1+a12x2++a1nxn,y2=a21x1+a22x2++a2nxn,⋯⋯⋯ym=am1x1+am2x2++amnxn
表示一个从变量 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,,xn到变量 y 1 , y 2 , ⋯ , y m y_1,y_2,\cdots,y_m y1,y2,,ym线性变换,其中 a i j a_{ij} aij为常数。线性变换的系数 a i j a_{ij} aij构成矩阵 A = ( a i j ) m × n A=(a_{ij})_{m\times n} A=(aij)m×n.

tips:线性变换与矩阵之间存在着一一对应的关系。

例如线性变换
{ y 1 = λ x 1 , y 2 = λ x 2 , ⋯ y n = λ x n \begin{cases} y_1=\lambda x_1,\\ y_2=\lambda x_2,\\ \cdots\\ y_n=\lambda x_n \end{cases} y1=λx1,y2=λx2,yn=λxn
对应n阶方阵:
A = ( λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ 0 0 0 ⋯ λ n ) A=\begin{pmatrix} \lambda_1&0&\cdots&0\\ 0&\lambda_2&\cdots&0\\ \vdots&\vdots&\ddots&0\\ 0&0&\cdots&\lambda_n\\ \end{pmatrix} A= λ1000λ20000λn

这个方阵特点:从左上角到右下角的直线(叫做对角线)以外的元素都是0.这种方阵称为对角矩阵,简称对角阵,记作

A = d i a g ( λ 1 , λ 2 , ⋯ , λ n ) A=diag(\lambda_1,\lambda_2,\cdots,\lambda_n) A=diag(λ1,λ2,,λn)

特别当 λ 1 = λ 2 = ⋯ = λ n = 1 \lambda_1=\lambda_2=\cdots=\lambda_n=1 λ1=λ2==λn=1时的线性变换叫做恒等变换,它对应的n阶方阵
A = ( 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ 0 0 0 ⋯ 1 ) A=\begin{pmatrix} 1&0&\cdots&0\\ 0&1&\cdots&0\\ \vdots&\vdots&\ddots&0\\ 0&0&\cdots&1\\ \end{pmatrix} A= 1000100001
叫做n阶单位矩阵,简称单位阵。矩阵特点:对角线上的元素都是1,其他元素都是0,即单位阵 E 的 ( i , j ) 元 e i j E的(i,j)元e_{ij} E(i,j)eij
e i j = { 1 , 当 i = j , 0 , 当 i ≠ j ( i , j = 1 , 2 , ⋯ , n ) e_{ij}=\begin{cases} 1,当i=j,\\ 0,当i\not=j \end{cases} (i,j=1,2,\cdots,n) eij={1,i=j,0,i=j(i,j=1,2,,n)

结语

❓QQ:806797785

⭐️文档笔记地址 https://github.com/gaogzhen/math

参考:

[1]同济大学数学系.工程数学.线性代数 第6版 [M].北京:高等教育出版社,2014.6.p24-29.

[2]同济六版《线性代数》全程教学视频[CP/OL].2020-02-07.p6.

这篇关于0201线性方程组和矩阵-矩阵及其运算-线性代数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/837280

相关文章

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

【Java中的位运算和逻辑运算详解及其区别】

Java中的位运算和逻辑运算详解及其区别 在 Java 编程中,位运算和逻辑运算是常见的两种操作类型。位运算用于操作整数的二进制位,而逻辑运算则是处理布尔值 (boolean) 的运算。本文将详细讲解这两种运算及其主要区别,并给出相应示例。 应用场景了解 位运算和逻辑运算的设计初衷源自计算机底层硬件和逻辑运算的需求,它们分别针对不同的处理对象和场景。以下是它们设计的初始目的简介:

位运算:带带孩子吧,孩子很强的!

快速进制 在聊到位运算之前,不妨先简单过一遍二进制的东西。熟悉二进制和十进制的快速转换确实是掌握位运算的基础,因为位运算直接在二进制位上进行操作。如果不熟悉二进制表示,很难直观理解位运算的效果。 这里主要涉及二进制和十进制之间的互相转换。 十进制转二进制 十进制转二进制可以使用常见的 除2取余法 进行。每次将十进制除以2并记录所得余数,直到商为0,然后再将记录的余数 从下往上排列即

线性代数|机器学习-P35距离矩阵和普鲁克问题

文章目录 1. 距离矩阵2. 正交普鲁克问题3. 实例说明 1. 距离矩阵 假设有三个点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1​,x2​,x3​,三个点距离如下: ∣ ∣ x 1 − x 2 ∣ ∣ 2 = 1 , ∣ ∣ x 2 − x 3 ∣ ∣ 2 = 1 , ∣ ∣ x 1 − x 3 ∣ ∣ 2 = 6 \begin{equation} ||x

【线性代数】正定矩阵,二次型函数

本文主要介绍正定矩阵,二次型函数,及其相关的解析证明过程和各个过程的可视化几何解释(深蓝色字体)。 非常喜欢清华大学张颢老师说过的一段话:如果你不能用可视化的方式看到事情的结果,那么你就很难对这个事情有认知,认知就是直觉,解析的东西可以让你理解,但未必能让你形成直觉,因为他太反直觉了。 正定矩阵 定义 给定一个大小为 n×n 的实对称矩阵 A ,若对于任意长度为 n 的非零向量 ,有 恒成