清华大学《信号与系统》电力系统同步相量计算【FFT/谐波/小波变换】

本文主要是介绍清华大学《信号与系统》电力系统同步相量计算【FFT/谐波/小波变换】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要内容   

该程序为清华大学《信号与系统》课程大作业的内容,内容研究深度和编程实现效果均较好,有详细的报告,是很好的参考资料,建议采用matlab高版本运行!

1.内容要求

(还有加分内容2和3,篇幅原因不再展示)

2.研究方法

同步相量是以标准时间信号作为采样过程的基准,通过对采样数据计算而得到的相量,同步相量测量信息包含每个测量量值的幅值和相角以及相应的时间标签。数据采集与监视控制系统(Supervisory Control And Data Acquisition,SCADA)是以计算机为基础的电力自动化监控系统,其运用领域涵盖了电力、冶金、石油、化工等,SCADA在过去的电力系统监视中应用最为广泛,技术发展最为成熟。

新一代电网通过以同步相量测量技术为基础的广域测量系统来检测和控制系统的状态。同步相量测量技术的核心是相量估计算法的设计,即算法的估计精度将直接影响到的应用效果。本次大作业旨在运用信号与系统课程所学知识,对所给电压信号进行频谱分析,并设计算法计算信号的同步向量,主要包含两个部分:幅值计算、相位计算。

需要指出的是,同步向量的幅值为有效值,相位为余弦函数表示下的相位。

2.1 快速傅里叶变换FFT

2.2 窗函数法

在分析信号基波及各次谐波时,由于采样不满足完整周期,会造成泄露误差。处理泄露误差的一种有效方法是为信号加窗。FFT本质上是DFS,对于采样得到的一段有限长离散信号,使用FFT计算得到的结果实际上是将这一段离散信号周期延拓后的周期离散信号的DFS的结果(实际上是主值区间)。当采样不满足完整周期时,将信号周期延拓时显然可能会在拼接处出现间断点,这些间断点将会在频谱中产生本不存在的频率分量,造成泄露误差。

加窗分析的思路是非常直观的,原本一段有限长的离散信号相当于一个矩形窗作用在原始信号上,在信号边缘处没有衰减,如果现在使用一个边缘衰减的窗口,则在这段信号的两端的采样点的幅值都将趋于0,此时再进行拼接,原本的间断点就会被大大削弱,它们在频谱中产生的额外频率分量就会变得很小,所以泄露误差会得到限制。

2.3 希尔伯特-黄变换

希尔伯特-黄变换用于对一个信号进行平稳化处理,分析信号的幅值、频率阶跃。它包括经验模态分解( Empirical Mode Decomposition,EMD)和Hilbert 谱分析( Hilbert Spectrum Analysis,HSA)两部分。首先将时间信号通过经验模态分解 (EMD),产生一系列具有不同特征尺度的数据序列,每个序列称为一个固有模态函数(IMF),再分别针对每个固有模态函数进行HHT变换,得到各自频率和幅值的瞬时值。由此构建信号的时间-频率-能量三位分布图,即Hilbert谱,无论在时间域还是频率域都具有良好的分辨率,并且能更好地反映出信号的本质特征。其变换框图如图所示。 

2.4 小波变换

小波变换能够对信号进行多分频率的频域分析。本次作业中主要利用小波变换去除信号中的白噪声。小波变换去噪方式有多种,本文选取的是非线性小波变换阈值法去噪。

  部分代码   

%双谱线插值初始版,用于求必做基波及谐波的平均频率、幅值、相位
clc;clear;close all;
​
wave = csvread('1_1.csv'); %load 数据
s=wave(1:3500,2);%由于在4800点前后会有幅值、频率阶跃,故不能直接对全部信号进行FFT,先截取前4500个点分析
fs=10000; %采样率
N=length(s);%采样点数
n=0:N-1;
M = 23;
w=0.5-0.5*cos(2*pi*(n)/N);%汉宁窗
r=s.*w';%对原信号加窗,信号乘以窗函数
v=fft(r,N);%进行FFT,返回N点的DFT
fuzhi=abs(v)/N*2*2;%求幅值并修正,修正系数为2
u=abs(v);
stem(fuzhi);%绘制出FFT后离散信号的茎状图,用于判断k0、k1、k2
A=zeros(1,30);%存储幅值
F=zeros(1,30);%存储频率
P=zeros(1,30);%存储相位
cishu=zeros(1,30);%存储次数
​
%以下为双峰谱线插值修正算法
for ii=0:29 %I+1对应谐波系数,题目说明只含有小于30次的谐波,故在29截止即可if(u(M - 1 + (M-1)*(ii)) > u(M + 1 + (M-1)*(ii)))k1 = M - 1 + (M-1)*(ii);k2 = M + (M-1)*(ii);else k1 = M + (M-1)*(ii);k2 = M + 1 + (M-1)*(ii);endy1 = u(k1);y2 = u(k2);b=(y2-y1)/(y2+y1);%相当于参考文献中的参数βa=1.5*b;%相当于参考文献中的参数αk0=k1+a+0.5-1;%峰值频率A(ii+1)=(y1+y2)*(2.35619403+1.15543628*a^2+0.32607873*a^4+0.07891461*a^6)/N;%修正后的幅值F(ii+1)=k0*fs/N; %频率不需要修正,P(ii+1)=(angle(v(M+1+6*ii))+pi/2-pi*(a-(-1)*0.5))/pi*180;
end

  部分结果一览   

下载链接

这篇关于清华大学《信号与系统》电力系统同步相量计算【FFT/谐波/小波变换】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/836415

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

电力系统中的A类在线监测装置—APView400

随着电力系统的日益复杂和人们对电能质量要求的提高,电能质量在线监测装置在电力系统中得到广泛应用。目前,市场上的在线监测装置主要分为A类和B类两种类型,A类和B类在线监测装置主要区别在于应用场景、技术参数、通讯协议和扩展性。选择时应根据实际需求和应用场景综合考虑,并定期维护和校准。电能质量在线监测装置是用于实时监测电力系统中的电能质量参数的设备。 APView400电能质量A类在线监测装置以其多核

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同