YOLOv8检测LUNA16肺结节实战(二):开始训练

2024-03-22 21:59

本文主要是介绍YOLOv8检测LUNA16肺结节实战(二):开始训练,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明:训练的过程,参考了DeepLung的训练形式,进行交叉训练。但不太明白,交叉训练有什么意义和优势?欢迎大家告知。

1、将注释文件(.xml)转化为YOLO格式:xml2txt.py

classes = ["nodule"]# 定义一个函数,将坐标信息转换为YOLO格式
def convert(size, box):dw = 1./(size[0])dh = 1./(size[1])x = (box[0] + box[1])/2.0 - 1y = (box[2] + box[3])/2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn x, y, w, h# 定义一个函数,接受 XML 文件和输出的文本文件作为参数
def convert_annotation(xml_file, txt_file):in_file = open(xml_file, 'r')  # 打开 XML 文件,'r' 表示读取模式out_file = open(txt_file, 'w')  # 打开输出的文本文件,'w' 表示写入模式tree = ET.parse(in_file)  # 使用 ElementTree 解析 XML 文件root = tree.getroot()  # 获取 XML 树的根节点size = root.find('size')  # 在根节点中找到 'size' 元素w = int(size.find('width').text)  # 获取图像宽度h = int(size.find('height').text)  # 获取图像高度# 遍历 XML 文件中的每个 'object' 元素for obj in root.iter('object'):difficult = 0  # difficult默认为0cls = obj.find('name').text  # 获取 'name' 元素的文本内容,即物体类别if cls not in classes or int(difficult)==1:continuecls_id = classes.index(cls)  # 获取类别在类别列表中的索引xmlbox = obj.find('bndbox')  # 获取 'bndbox' 元素b = (float(xmlbox.find('xmin').text),float(xmlbox.find('xmax').text),float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))  # 获取边界框坐标信息# 调用 convert 函数,将坐标信息转换为YOLO格式bb = convert((w, h), b)# 将转换后的信息写入输出文本文件out_file.write(f"{cls_id} {' '.join(map(str, bb))}\n")in_file.close()  # 关闭输入文件out_file.close()  # 关闭输出文件# 指定 bsse 文件目录和 base 保存目录
xml_base_dir = r'/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/data/'
save_base_dir = r'/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/data/'# 历遍所有子集,生成*.txt文件
for subset_num in range(10):# 获取文件列表xml_files = glob(os.path.join(xml_base_dir, "subset{}".format(subset_num), "annotations", "*.xml"))print(xml_files)# 指定保存路径save_dir = os.path.join(save_base_dir, "subset{}/".format(subset_num), "labels")# 如果保存路径不存在,则创建if not os.path.exists(save_dir):os.makedirs(save_dir)# 遍历 XML 文件列表中的每个文件for xml_file in xml_files:# 调用 convert_annotation 函数,将 XML 转换为 YOLO 格式,并保存到指定目录convert_annotation(xml_file, os.path.join(save_dir, os.path.basename(xml_file)[:-3] + 'txt'))

2、生成训练集、测试集、验证集:config_training0.py - config_training9.py

# 指定训练集、验证集、测试集和保存文件夹路径
train_folder_list = ['/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/data/subset1/images','/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/data/subset2/images','/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/data/subset3/images','/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/data/subset4/images','/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/data/subset5/images','/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/data/subset6/images','/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/data/subset7/images','/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/data/subset8/images','/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/data/subset9/images']
val_data_path = r'/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/data/subset0/images'
test_data_path = r'/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/data/subset0/images'
output_dir = r"/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/training/subset0/"
os.makedirs(output_dir, exist_ok=True)  # 如果保存路径不存在,则创建# 获取文件夹中所有图片文件的路径
image_train_paths = []
for folder in train_folder_list:image_train_paths.extend([os.path.join(folder, file) for file in os.listdir(folder) if file.endswith(('.jpg', '.png', '.jpeg'))])
image_val_paths = [os.path.join(val_data_path, file) for file in os.listdir(val_data_path) iffile.endswith(('.jpg', '.png', '.jpeg'))]
image_test_paths = [os.path.join(test_data_path, file) for file in os.listdir(test_data_path) iffile.endswith(('.jpg', '.png', '.jpeg'))]# 指定保存路径
output_train_file = os.path.join(output_dir, "train.txt")
output_val_file = os.path.join(output_dir, "val.txt")
output_test_file = os.path.join(output_dir, "test.txt")# 将训练集每个图片的路径写入文本文件
with open(output_train_file, 'w') as file:for path in image_train_paths:file.write(path + '\n')
print(f"图片路径已保存到 {output_train_file}")# 将验证集每个图片的路径写入文本文件
with open(output_val_file, 'w') as file:for path in image_val_paths:file.write(path + '\n')
print(f"图片路径已保存到 {output_val_file}")# 将测试集每个图片的路径写入文本文件
with open(output_test_file, 'w') as file:for path in image_test_paths:file.write(path + '\n')
print(f"图片路径已保存到 {output_test_file}")

修改以上代码的文件夹路径,生成10个训练集,进行交叉验证

3、修改配置文件:config.yaml

找到配置文件:/home/bsuo/miniconda3/envs/yolov8/lib/python3.8/site-packages/ultralytics/cfg/datasets/coco128.yaml
复制配置文件到:/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/training/subset0/
修改配置文件名为:config.yaml
修改配置文件内容:主要是train.txt、val.txt和test.txt文件路径,以及检测的names

# YOLOv8 Configuration File
train: /media/bsuo/Seagate/CT_image/LUNA_YOLOv8/training/subset0/train.txt
val: /media/bsuo/Seagate/CT_image/LUNA_YOLOv8/training/subset0/val.txt
test:  /media/bsuo/Seagate/CT_image/LUNA_YOLOv8/training/subset0/test.txt# Classes
names:0: nodule

重复以上步骤,让每个subset子文件夹(subset0 - subset9)都有一个不同的config.yaml配置文件(需修改相应的路径)

4、修改模型文件:yolov8.yaml

找到模型文件:/home/bsuo/miniconda3/envs/yolov8/lib/python3.8/site-packages/ultralytics/cfg/models/v8/yolov8.yaml
在原位置,将nc参数(nc: number of classes)改成1,因为只有1个分类(nodule)

nc: 1  # number of classes

5、训练自己的数据集(基于预训练模型):train_all_subsets.py

# 指定基础路径和子文件夹列表
base_path = "/media/bsuo/Seagate/CT_image/LUNA_YOLOv8/training"
base_output_path = "/media/bsuo/Seagate/CT_image/LUNA_YOLOv8"
subset_folders = [f"subset{i}" for i in range(10)]# 遍历每个子文件夹,生成文件路径并运行训练
for i, subset_folder in enumerate(subset_folders):print("开始训练:", subset_folder)# 生成对应的配置文件路径config_path = os.path.join(base_path, subset_folder, "config.yaml")# 指定运行参数command = f"yolo task=detect mode=train model=yolov8x.yaml pretrained=true data={config_path} epochs=150 batch=6 workers=12 device=0"# 创建一个新的文件夹来保存每个子集的结果output_folder = os.path.join(base_output_path, "results", subset_folder)os.makedirs(output_folder, exist_ok=True)# 运行训练命令subprocess.run(command, shell=True, cwd=output_folder)print("训练完成")

训练参数:yolo task=detect mode=train model=yolov8x.yaml pretrained=true data=config.yaml epochs=150 batch=6 workers=12 device=0

6、训练结果:10组交叉训练已经全部完成,花费了大概12天时间

第1组:mAP = 81.5%
第2组:mAP = 78.7%
第3组:mAP = 81.0%
第4组:mAP = 76.2%
第5组:mAP = 79.0%
第6组:mAP = 79.0%
第7组:mAP = 75.9%
第8组:mAP = 75.0%
第9组:mAP = 70.0%
第10组:mAP = 75.8%

以下是第1组训练的mAP:

下一步,将想办法改进代码,希望能获得一个更好的训练结果。

这篇关于YOLOv8检测LUNA16肺结节实战(二):开始训练的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/836282

相关文章

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变