【项目】基于YOLOv8和RotNet实现圆形滑块验证码(拼图)自动识别(通过识别中间圆形的角度实现)

本文主要是介绍【项目】基于YOLOv8和RotNet实现圆形滑块验证码(拼图)自动识别(通过识别中间圆形的角度实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

@TOC

一、引言

1.1 实现目标

要达到的效果是使用算法预测中间圆形的角度,返回给服务器,实现自动完成验证码的问题。要实现的内容如下图所示。
在这里插入图片描述

在这里插入图片描述

1.2 实现思路

思路1(效果较差):以RotNet要实现的验证码识别为灵感,先利用YOLO算法检测出中间圆,再把圆形图像输入给RotNet,让其预测角度,进而返回给服务器。

但是实际应用的过程中,笔者发现这种算法逻辑执行效果较差。
因为RotNet要完成的是独立的圆预测角度,实现的是如下图所示的圆的角度预测,单独的圆就已经是独立出来的一张图像,因此直接输入进网络,预测效果会很好
在这里插入图片描述
但是我们要实现的相当于中间圆和外部图形的拼图操作,而不仅仅是简单的预测角度,所以直接把中间的圆拿出来进行角度预测,显然脱离了背景,而且有些题把中间独立的圆抠出来之后,很难对其角度进行定义,所以效果很差
在这里插入图片描述

思路2:有了思路1的教训,我们要做的第一步就是把外部的背景图像引入进来进行训练

二、数据集制备

网络上没有此类开源的数据集,因此笔者自行进行了制备,具体分为以下两种:

  1. 一种是以下这种圆完全归位的一整张图,都是用美工P图的方法进行制备的在这里插入图片描述
  2. 第二种是直接截取的这种没有P图过的没有修正过的图像
    在这里插入图片描述
    此类数据集制备完成之后再用笔者编写的脚本使其归位,部分代码如下
    大致思路为:
  • 先使用YOLO算法检测出图像中的圆
  • 再利用算法使用a、d两个按键进行角度偏转,使用z、c两个按键进行切图
  • 观察到图像回正之后,按s键保存到指定文件夹下

效果如下:

3eb50dabc910b6

import math
import numpy as np
import cv2
from ultralytics import YOLO
import osyolo_model = YOLO(r"D:\kb\rotate-captcha-crack-master_my\yolo.pt")def code_dect(folder_path, output_path):files = []current_index = 0while True:if not files:print("文件夹中没有图像文件。")breakimg_path = os.path.join(folder_path, files[current_index])img = cv2.imread(img_path)imgDoub = img# 检测出的boxcenter_box = []results = yolo_model.predict(img, stream=True)boxAll = []for r in results:boxes = r.boxesfor box in boxes:x1, y1, x2, y2 = box.xyxy[0]  # 获取边界框的坐标x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)w, h = x2 - x1, y2 - y1bbox = (x1, y1, w, h)boxAll.append(bbox)# 计算图像中心坐标width, height = img.shape[0], img.shape[1]image_center_x = width / 2image_center_y = height / 2# 找出距离图像中心最近的矩形框min_distance = float('inf')for rectangle in boxAll:center_x, center_y = calculate_center(rectangle)distance = math.sqrt((center_x - image_center_x) ** 2 + (center_y - image_center_y) ** 2)if distance < min_distance:min_distance = distancecenter_box = rectangleif center_box == []:print(f"没有检测到目标:{img_path}")else:# 创建与图像相同大小的黑色背景mask = np.zeros_like(imgDoub[:, :, 0])# 定义圆的外接矩形坐标x, y, w, h = center_box# 在掩码上绘制白色的圆形cv2.circle(mask, (x + w // 2, y + h // 2), min(w, h) // 2, (255, 255, 255), -1)# 将掩码应用到白色背景上,保留圆形区域onlyCircle = cv2.bitwise_and(imgDoub, imgDoub, mask=mask)mask2 = np.zeros_like(img, dtype=np.uint8)# 在掩码上绘制圆形区域cv2.circle(mask2, (x + w // 2, y + h // 2), min(w, h) // 2, (255, 255, 255), -1)rotate = Truereverse = Falseangle = 0while rotate:# 获取图像的中心点坐标height, width = onlyCircle.shape[:2]center = (width // 2, height // 2)# 定义旋转矩阵rotation_matrix = cv2.getRotationMatrix2D(center, angle, 1.0)# 进行旋转变换rotated_image = cv2.warpAffine(onlyCircle, rotation_matrix, (width, height))# 将圆形区域置为0imgDoub[mask2 != 0] = 0result = rotated_image + imgDoubcv2.imshow("result", result)# 添加按键监听key = cv2.waitKey(1)# z、c分别是切换上一张或者下一张图if key == ord('z'):current_index = (current_index - 1) % len(files)break# 按下 'c' 键逆时针旋转elif key == ord('c'):current_index = (current_index + 1) % len(files)break# 按下 's' 键保存图像elif key == ord('s'):output_img_path = os.path.join(output_path, files[current_index])cv2.imwrite(output_img_path, result)print(f"图像已保存到:{output_img_path}")if key == ord('a'):angle += 1# 按下 'd' 键逆时针旋转elif key == ord('d'):angle -= 1elif key == ord('q'):angle += 10elif key == ord('e'):angle -= 10if __name__ == '__main__':folder_path = input("请输入文件夹路径:")output_path = input("请输入输出路径:")code_dect(folder_path, output_path)

三、算法逻辑

1、生成样本

使用RotNet作为本算法的预测核心预测算法,把我们上文中生成的回正数据首先利用编写的脚本给每张图像生成360张不同角度的图像,文件名的后缀代表这张图象真实的偏转角度。
,

2、训练算法

把生成的所有图像输入进改进的RotNet进行训练,由于这种类型的样本学习很容易出现过拟合的现象,因此笔者在网络中加了几个DropOut操作。

3、算法逻辑

我们并没有简单把单张图像输入进算法来进行角度预测,这样360个类别误差太大效果会比较差,在应用的时候我们也是先把中间的圆形图像抠出来,然后对其使用算法旋转360度,把360张图像都进行角度预测,最后取出0到3度和357到359度的图像返回它的序列值,即真实的角度值。如果没有这些范围之内的图像,那就返回-1,切下一张图像,防止错误次数太多。代码如下所示:

import math
import numpy as np
import torch
from PIL import Image
from rotate_captcha_crack.common import device
from rotate_captcha_crack.model import RotNetR
from rotate_captcha_crack.utils import process_captcha
import cv2
from ultralytics import YOLOyolo_model = YOLO(r"D:\chenjie\rotate-captcha-crack-master_my\yolo.pt")def calculate_center(rectangle):x, y, w, h = rectanglecenter_x = x + w / 2center_y = y + h / 2return center_x, center_ymodel = RotNetR(train=False, cls_num=360)
model_path = r"D:\chenjie\rotate-captcha-crack-master_my\models\RotNetR\240316_17_14_23_006\best.pth"model.load_state_dict(torch.load(str(model_path)))
model = model.to(device=device)
model.eval()
def predictAngle(img):img = Image.fromarray(img)img_ts = process_captcha(img)img_ts = img_ts.to(device=device)predict = model.predict(img_ts)return predictdef code_dect(img):imgDoub = img# 检测出的boxcenter_box = []results = yolo_model.predict(img, stream=True)boxAll = []for r in results:boxes = r.boxesfor box in boxes:x1, y1, x2, y2 = box.xyxy[0]  # Gives coordinates to draw bounding boxx1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)w, h = x2 - x1, y2 - y1bbox = (x1, y1, w, h)boxAll.append(bbox)# 计算图像中心坐标width, height = img.shape[0], img.shape[1]image_center_x = width / 2image_center_y = height / 2# 找出距离图像中心最近的矩形框min_distance = float('inf')for rectangle in boxAll:center_x, center_y = calculate_center(rectangle)distance = math.sqrt((center_x - image_center_x) ** 2 + (center_y - image_center_y) ** 2)if distance < min_distance:min_distance = distancecenter_box = rectangleif center_box==[]:print("kong")else:# 把圆区域搞出来# 创建与图像相同大小的黑色背景mask = np.zeros_like(imgDoub[:, :, 0])# 定义圆的外接矩形坐标x, y, w, h = center_box# 在掩码上绘制白色的圆形cv2.circle(mask, (x + w // 2, y + h // 2), min(w, h) // 2, (255, 255, 255), -1)# 将掩码应用到白色背景上,保留圆形区域onlyCircle = cv2.bitwise_and(imgDoub, imgDoub, mask=mask)# 显示结果图像# cv2.imshow('Only Circle', onlyCircle)# cv2.imshow('imgDoub', imgDoub)# cv2.waitKey(0)mask2 = np.zeros_like(img, dtype=np.uint8)# 在掩码上绘制圆形区域cv2.circle(mask2, (x + w // 2, y + h // 2), min(w, h) // 2, (255, 255, 255), -1)angles = []for angle in range(0, 360):# 获取图像的中心点坐标height, width = onlyCircle.shape[:2]center = (width // 2, height // 2)# 定义旋转矩阵rotation_matrix = cv2.getRotationMatrix2D(center, angle, 1.0)# 进行旋转变换rotated_image = cv2.warpAffine(onlyCircle, rotation_matrix, (width, height))# 将圆形区域置为0imgDoub[mask2 != 0] = 0result = rotated_image+imgDoubpredict = predictAngle(result)# cv2.imshow("sdf",result)# print(predict)# cv2.waitKey(10)angles.append(predict)minAngle = min(angles)maxAngle = max(angles)minAngleIdx = angles.index(min(angles))maxAngleIdx = angles.index(max(angles))finalAngleIdx = -1if maxAngle>356:finalAngleIdx = maxAngleIdxelif minAngle<4:finalAngleIdx = minAngleIdxprint(finalAngleIdx)return finalAngleIdxif __name__ == '__main__':# 测试整体img = cv2.imread("D:\chenjie\\rotate-captcha-crack-master_my\images\e42c0939dc3bde88657a88ac07d59d6.png")code_dect(img)

最后可以达到80-90%的通过率,效果已经很不错了
演示效果如下:

ab7c1b94c3bc27b8

三、代码、数据集获取

q:1831255794(有偿)制备数据集和写算法耗费了大量时间精力,因此收取点小费希望理解!!!
可接项目,大作业,毕设等 
价格略贵,技术够硬,认真负责,保证质量

这篇关于【项目】基于YOLOv8和RotNet实现圆形滑块验证码(拼图)自动识别(通过识别中间圆形的角度实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/834283

相关文章

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

springboot security验证码的登录实例

《springbootsecurity验证码的登录实例》:本文主要介绍springbootsecurity验证码的登录实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录前言代码示例引入依赖定义验证码生成器定义获取验证码及认证接口测试获取验证码登录总结前言在spring

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专