吴恩达机器学习-可选实验室:简单神经网络(Simple Neural Network)

本文主要是介绍吴恩达机器学习-可选实验室:简单神经网络(Simple Neural Network),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这个实验室里,我们将使用Numpy构建一个小型神经网络。它将与您在Tensorflow中实现的“咖啡烘焙”网络相同。在这里插入图片描述

import numpy as np
import matplotlib.pyplot as plt
plt.style.use('./deeplearning.mplstyle')
import tensorflow as tf
from lab_utils_common import dlc, sigmoid
from lab_coffee_utils import load_coffee_data, plt_roast, plt_prob, plt_layer, plt_network, plt_output_unit
import logging
logging.getLogger("tensorflow").setLevel(logging.ERROR)
tf.autograph.set_verbosity(0)

数据集
这是与前一个实验室相同的数据集。

X,Y = load_coffee_data();
print(X.shape, Y.shape)

在这里插入图片描述
让我们在下面绘制咖啡烘焙数据。这两个功能是以摄氏度为单位的温度和以分钟为单位的持续时间。在家烤咖啡建议时间最好保持在12到15分钟之间,而温度应该在175到260摄氏度之间。当然,随着温度的升高,持续时间应该会缩短。

plt_roast(X,Y)

在这里插入图片描述
标准化数据
为了与之前的实验室相匹配,我们将对数据进行规范化。请参考该实验室了解更多详细信息

print(f"Temperature Max, Min pre normalization: {np.max(X[:,0]):0.2f}, {np.min(X[:,0]):0.2f}")
print(f"Duration    Max, Min pre normalization: {np.max(X[:,1]):0.2f}, {np.min(X[:,1]):0.2f}")
norm_l = tf.keras.layers.Normalization(axis=-1)
norm_l.adapt(X)  # learns mean, variance
Xn = norm_l(X)
print(f"Temperature Max, Min post normalization: {np.max(Xn[:,0]):0.2f}, {np.min(Xn[:,0]):0.2f}")
print(f"Duration    Max, Min post normalization: {np.max(Xn[:,1]):0.2f}, {np.min(Xn[:,1]):0.2f}")

在这里插入图片描述
上面的这部分跟上一篇文章一样
Numpy模型(Numpy中的正向道具)
在这里插入图片描述

让我们构建讲座中描述的“咖啡烘焙网络”。有两层Sigmoid激活。

如讲座中所述,可以使用NumPy构建自己的密集层。然后可以利用这一点来构建多层神经网络。
在这里插入图片描述
在第一个可选实验室中,您在NumPy和Tensorflow中构建了一个神经元,并注意到它们的相似性。一个层只包含多个神经元/单元。如讲座中所述,可以使用for循环访问层中的每个单元(j),并对该单元(W[:,j])执行权重的点积,并对单元(b[j])的偏差求和以形成z。然后可以将激活函数g(z)应用于该结果。让我们在下面尝试构建一个“密集层”子程序。
👇my_dense函数计算每一层的输出值

def my_dense(a_in, W, b, g):"""Computes dense layerArgs:a_in (ndarray (n, )) : Data, 1 example W    (ndarray (n,j)) : Weight matrix, n features per unit, j unitsb    (ndarray (j, )) : bias vector, j units  g    activation function (e.g. sigmoid, relu..)Returnsa_out (ndarray (j,))  : j units|"""units = W.shape[1]a_out = np.zeros(units)for j in range(units):               w = W[:,j]                                    z = np.dot(w, a_in) + b[j]         a_out[j] = g(z)               return(a_out)

👇下面的单元利用上面的my_dense子程序构建了一个两层神经网络。返回神经网络最终输出值。

def my_sequential(x, W1, b1, W2, b2):a1 = my_dense(x,  W1, b1, sigmoid)a2 = my_dense(a1, W2, b2, sigmoid)return(a2)

我们可以在Tensorflow中复制以前实验室中训练过的权重和偏差。

W1_tmp = np.array( [[-8.93,  0.29, 12.9 ], [-0.1,  -7.32, 10.81]] )
b1_tmp = np.array( [-9.82, -9.28,  0.96] )
W2_tmp = np.array( [[-31.18], [-27.59], [-32.56]] )
b2_tmp = np.array( [15.41] )

预测
在这里插入图片描述
一旦你有了一个经过训练的模型,你就可以用它来进行预测。回想一下,我们模型的输出是一个概率。在这种情况下,烤得好的概率。要做出决定,必须将概率应用于阈值。在这种情况下,我们将使用0.5。

让我们从编写一个类似于Tensorflow的model.product()的例程开始。这需要一个矩阵𝑋与所有𝑚行中的示例,并通过运行模型进行预测。
my_sequential()是对一个输入进行预测,👇my_predict()是对所有的X进行预测

def my_predict(X, W1, b1, W2, b2):m = X.shape[0]p = np.zeros((m,1))for i in range(m):p[i,0] = my_sequential(X[i], W1, b1, W2, b2)return(p)

我们可以在两个例子中尝试这个例程:
👇调用函数

X_tst = np.array([[200,13.9],  # postive example[200,17]])   # negative example
X_tstn = norm_l(X_tst)  # remember to normalize
predictions = my_predict(X_tstn, W1_tmp, b1_tmp, W2_tmp, b2_tmp)

为了将概率转换为决策,我们应用了一个阈值:

yhat = np.zeros_like(predictions)
for i in range(len(predictions)):if predictions[i] >= 0.5:yhat[i] = 1else:yhat[i] = 0
print(f"decisions = \n{yhat}")

在这里插入图片描述
这可以更简洁地完成:

yhat = (predictions >= 0.5).astype(int)
print(f"decisions = \n{yhat}")

在这里插入图片描述
网络功能
此图显示了整个网络的操作,与之前实验室的Tensorflow结果相同。左图是由蓝色阴影表示的最终层的原始输出。这覆盖在由X和O表示的训练数据上。
右图是在决策阈值之后网络的输出。这里的X和O对应于网络做出的决策。

netf= lambda x : my_predict(norm_l(x),W1_tmp, b1_tmp, W2_tmp, b2_tmp)
plt_network(X,Y,netf)

在这里插入图片描述
祝贺
您已经在NumPy中构建了一个小型神经网络。希望这个实验室揭示了构成神经网络一层的相当简单和熟悉的功能。

这篇关于吴恩达机器学习-可选实验室:简单神经网络(Simple Neural Network)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832627

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss