pose graph 估计实验和机器学习应用场景

2024-03-21 08:59

本文主要是介绍pose graph 估计实验和机器学习应用场景,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

玩乐:
在这里插入图片描述
用pose graph 估计相机位姿的实验

目前开源的SLAM RGB-D相机方案主要有:
DTAM https://github.com/anuranbaka/OpenDTAM
DVO https://github.com/tum-vision/dvo_slam
RTAB-MAP https://github.com/introlab/rtabmap
RGBD-SLAM-V2 https://github.com/felixendres/rgbdslam_v2
Elastic Fusion https://github.com/mp3guy/ElasticFusion
由于年代都比较久远,下了一个RTAB-MAP的源码不会修改到当前版本,就去YouTube看了下视频,神秘代码如下:
https://www.youtube.com/watch?v=71eRxTc1DaU&feature=youtu.be
2017年用联想手机扫描产生三维重建的图形,虽然比较粗糙,但是对于手机来说已经足够轻量级

看完了十四讲,也拟定了方向,基于语义分割(机器学习)的室内场景重建
在这里插入图片描述

语义重建的一些实验结果,语义分割其实现在已经到了一个高峰期,强化学习等手段层出不穷
传统非机器学习做法是构建物品数据库,直接将观测数据与数据库的样本进行比较[1,2 ]
【1】R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and A. J. Davison,
“Slam++: Simultaneous localisation and mapping at the level of objects,” 2013 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1352–9, 2013.
【2】R. F. Salas-Moreno, B. Glocken, P. H. Kelly, and A. J. Davison, “Dense planar slam,” inMixed and Augmented Reality (ISMAR), 2014 IEEE International Symposium on, pp. 157–164, IEEE, 2014.
尝试去构建语义地图[3, 4, 5, 6]
【3】A. Anand, H. S. Koppula, T. Joachims, and A. Saxena, “Contextually guided semantic la-beling and search for three-dimensional point clouds,” The International Journal of Robotics Research, p. 0278364912461538, 2012.
【4】J. Stückler, N. Biresev, and S. Behnke, “Semantic mapping using object-class segmentation of rgb-d images,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3005–3010, IEEE, 2012.
【5】I. Kostavelis and A. Gasteratos, “Learning spatially semantic representations for cognitive robot navigation,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1460–1475, 2013.
【6】C. Couprie, C. Farabet, L. Najman, and Y. LeCun, “Indoor semantic segmentation using depth information,” arXiv preprint arXiv:1301.3572, 2013.
现代由于机器学习的发展,开始使用神经网络,深度学习强化学习的方法去对图像进行准确的识别,检测和分割[144, 145, 146, 147, 148, 149]
【7】 J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in CVPR09, 2009.
【8】 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.
【9】 K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv preprint arXiv:1512.03385, 2015.
【10】S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” in Advances in neural information processing systems, pp. 91–99, 2015.
【11】J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmen-
tation,” arXiv preprint arXiv:1411.4038, 2014.
甚至构建地图本身的位姿估计和回环检测[13, 14, 15]
【13】 K. Konda and R. Memisevic, “Learning visual odometry with a convolutional network,” in International Conference on Computer Vision Theory and Applications, 2015.
【14】 A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional network for real-time 6-dof camera relocalization,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 2938–2946, 2015.
【15】 Y. Hou, H. Zhang, and S. Zhou, “Convolutional neural network-based image representation for visual loop closure detection,” arXiv preprint arXiv:1504.05241, 2015.

这篇关于pose graph 估计实验和机器学习应用场景的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832280

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和