YOLOv5区域检测计数+声音警报

2024-03-20 21:59

本文主要是介绍YOLOv5区域检测计数+声音警报,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLOv5区域检测计数+声音警报

  • 1. 相关配置
  • 2. 检测区域设置
  • 3. 画检测区域线(不想显示也可以不画)
  • 4. 报警模块
  • 5. 计数模块
  • 6. 代码修改
    • 6.1 主代码
    • 6.2 细节修改(可忽略)
  • 6. 实验效果

本篇博文工程源码下载
链接1:https://github.com/up-up-up-up/yolov5-area-detection( 求 STAR )
链接2:https://pan.baidu.com/s/1WFVMow_-4M5Cc6P3nY63Sw?pwd=nucv

具体实现效果已在Bilibili发布,点击跳转

1. 相关配置

系统:win 10
YOLO版本:yolov5 6.1
电脑显卡:NVIDIA 2080Ti(CPU也可以跑,GPU只是起到加速推理效果)

2. 检测区域设置

设置区域范围由四个点围成,四个点的坐标分别为(wl1,hl1),(wl2,hl2),(wl3,hl3),(wl4,hl4)

 # 1,2,3,4分别代表左上,右上,右下,左下四个点坐标,即(480,270)(700,270)(700,810)(480,810)
hl1 = 270 / 1080  # 左上纵坐标/图片高度
wl1 = 480 / 1920  # 左上横坐标/图片宽度
hl2 = 270 / 1080  # 右上横坐标/图片宽度
wl2 = 700 / 1920  # 右上横坐标/图片宽度
hl3 = 810 / 1080  # 右下横坐标/图片宽度
wl3 = 700 / 1920  # 右下横坐标/图片宽度
hl4 = 810 / 1080  # 左下横坐标/图片宽度
wl4 = 480 / 1920  # 左下横坐标/图片宽度

请添加图片描述
具体把这部分代码加在了摄像头循环 for path, im, im0s, vid_cap, s in dataset 下:

for path, im, im0s, vid_cap, s in dataset:# 1,2,3,4分别代表左上,右上,右下,左下四个点坐标,即(480,270)(700,270)(700,810)(480,810)hl1 = 270 / 1080  # 左上纵坐标/图片高度wl1 = 480 / 1920  # 左上横坐标/图片宽度hl2 = 270 / 1080  # 右上横坐标/图片宽度wl2 = 700 / 1920  # 右上横坐标/图片宽度hl3 = 810 / 1080  # 右下横坐标/图片宽度wl3 = 700 / 1920  # 右下横坐标/图片宽度hl4 = 810 / 1080  # 左下横坐标/图片宽度wl4 = 480 / 1920  # 左下横坐标/图片宽度if webcam:for b in range(0, im.shape[0]):mask = np.zeros([im[b].shape[1], im[b].shape[2]], dtype=np.uint8)# mask[round(img[b].shape[1] * hl1):img[b].shape[1], round(img[b].shape[2] * wl1):img[b].shape[2]] = 255pts = np.array([[int(im[b].shape[2] * wl1), int(im[b].shape[1] * hl1)],  # pts1[int(im[b].shape[2] * wl2), int(im[b].shape[1] * hl2)],  # pts2[int(im[b].shape[2] * wl3), int(im[b].shape[1] * hl3)],  # pts3[int(im[b].shape[2] * wl4), int(im[b].shape[1] * hl4)]], np.int32) # 将四个点坐标存储为数组形式mask = cv2.fillPoly(mask, [pts], (255, 255, 255))  # 设置四个点围成的区域为分割区域imgc = im[b].transpose((1, 2, 0))imgc = cv2.add(imgc, np.zeros(np.shape(imgc), dtype=np.uint8), mask=mask)  #将分割区域添加进图像中# cv2.imshow('1',imgc)im[b] = imgc.transpose((2, 0, 1))else:mask = np.zeros([im.shape[1], im.shape[2]], dtype=np.uint8)# mask[round(img.shape[1] * hl1):img.shape[1], round(img.shape[2] * wl1):img.shape[2]] = 255pts = np.array([[int(im.shape[2] * wl1), int(im.shape[1] * hl1)],  # pts1[int(im.shape[2] * wl2), int(im.shape[1] * hl2)],  # pts2[int(im.shape[2] * wl3), int(im.shape[1] * hl3)],  # pts3[int(im.shape[2] * wl4), int(im.shape[1] * hl4)]], np.int32)mask = cv2.fillPoly(mask, [pts], (255, 255, 255))img = im.transpose((1, 2, 0))img = cv2.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=mask)im = img.transpose((2, 0, 1))

3. 画检测区域线(不想显示也可以不画)

在 for i, det in enumerate(pred) 后添加以下代码:

for i, det in enumerate(pred):  # per imageseen += 1if webcam:  # batch_size >= 1p, im0, frame = path[i], im0s[i].copy(), dataset.counts += f'{i}: 'cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),cv2.FONT_HERSHEY_SIMPLEX,1.0, (255, 255, 0), 2, cv2.LINE_AA) # 将 Detection_Region 这几个字写进图片pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1[int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2[int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3[int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4,将四个点坐标存储为数组# pts = pts.reshape((-1, 1, 2))zeros = np.zeros((im0.shape), dtype=np.uint8)mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))  # 将分割区域填充为浅蓝色im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)   # 在图上显示cv2.polylines(im0, [pts], True, (255, 255, 0), 3)   # 画边框线else:p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),cv2.FONT_HERSHEY_SIMPLEX,1.0, (255, 255, 0), 2, cv2.LINE_AA)pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1[int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2[int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3[int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4# pts = pts.reshape((-1, 1, 2))zeros = np.zeros((im0.shape), dtype=np.uint8)mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)cv2.polylines(im0, [pts], True, (255, 255, 0), 3)

4. 报警模块

当画框区域里检测到行人,进行报警

if save_img or save_crop or view_img:  # Add bbox to imageif names[int(cls)] == "person":c = int(cls)  # integer classlabel = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')annotator.box_label(xyxy, label, color=colors(c, True))pygame.mixer.init()   # 初始化pygame.mixer.music.load('out.wav')  # 加载音频out.wav文件pygame.mixer.music.set_volume(1)  # 设置音量pygame.mixer.music.play()   # 播放音效if save_crop:save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

5. 计数模块

首先定义一个全局变量person_count,具体写在if len(det)上方,需要注意这个全局变量需要与if view_img和if save_img同梯度,#111是我添加的代码

global person_count  # 111
person_count = 0   # 111
p = Path(p)  # to Path
save_path = str(save_dir / p.name)  # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
s += '%gx%g ' % im.shape[2:]  # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
imc = im0.copy() if save_crop else im0  # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):# Rescale boxes from img_size to im0 sizedet[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()# Print resultsfor c in det[:, -1].unique():n = (det[:, -1] == c).sum()  # detections per classs += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

然后在if save_img or save_crop or view_img添加计数

for *xyxy, conf, cls in reversed(det):if save_txt:  # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywhline = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label formatwith open(txt_path + '.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')if save_img or save_crop or view_img:  # Add bbox to imageif names[int(cls)] == "person":c = int(cls)  # integer classlabel = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')annotator.box_label(xyxy, label, color=colors(c, True))person_count += 1                            # 111pygame.mixer.init()pygame.mixer.music.load('out.wav')pygame.mixer.music.set_volume(1)pygame.mixer.music.play()

最后在view_img和save_img里画图显示

# Stream results
im0 = annotator.result()
if view_img:text = 'person_num:%d ' % (person_count)         # 111cv2.putText(im0, text, (180, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)      # 111cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)cv2.resizeWindow("Webcam", 1280, 720)cv2.moveWindow("Webcam", 0, 100)cv2.imshow("Webcam", im0)cv2.waitKey(1)# Save results (image with detections)
if save_img:text = 'person_num:%d ' % (person_count)       # 111cv2.putText(im0, text, (180, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)     # 111if dataset.mode == 'image':cv2.imwrite(save_path, im0)else:  # 'video' or 'stream'if vid_path[i] != save_path:  # new videovid_path[i] = save_pathif isinstance(vid_writer[i], cv2.VideoWriter):vid_writer[i].release()  # release previous video writerif vid_cap:  # videofps = vid_cap.get(cv2.CAP_PROP_FPS)w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))else:  # streamfps, w, h = 30, im0.shape[1], im0.shape[0]save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videosvid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))vid_writer[i].write(im0)

6. 代码修改

6.1 主代码

import argparse
import os
import sys
from pathlib import Pathimport cv2
import numpy as np
import pygame
import torch
import torch.backends.cudnn as cudnnFILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relativefrom models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync@torch.no_grad()
def run(weights=ROOT / 'yolov5s.pt',  # model.pt path(s)source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcamdata=ROOT / 'data/coco128.yaml',  # dataset.yaml pathimgsz=(640, 640),  # inference size (height, width)conf_thres=0.25,  # confidence thresholdiou_thres=0.45,  # NMS IOU thresholdmax_det=1000,  # maximum detections per imagedevice='',  # cuda device, i.e. 0 or 0,1,2,3 or cpuview_img=False,  # show resultssave_txt=False,  # save results to *.txtsave_conf=False,  # save confidences in --save-txt labelssave_crop=False,  # save cropped prediction boxesnosave=False,  # do not save images/videosclasses=None,  # filter by class: --class 0, or --class 0 2 3agnostic_nms=False,  # class-agnostic NMSaugment=False,  # augmented inferencevisualize=False,  # visualize featuresupdate=False,  # update all modelsproject=ROOT / 'runs/detect',  # save results to project/namename='exp',  # save results to project/nameexist_ok=False,  # existing project/name ok, do not incrementline_thickness=3,  # bounding box thickness (pixels)hide_labels=False,  # hide labelshide_conf=False,  # hide confidenceshalf=False,  # use FP16 half-precision inferencednn=False,  # use OpenCV DNN for ONNX inference):source = str(source)save_img = not nosave and not source.endswith('.txt')  # save inference imagesis_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)if is_url and is_file:source = check_file(source)  # download# Directoriessave_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir# Load modeldevice = select_device(device)model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engineimgsz = check_img_size(imgsz, s=stride)  # check image size# Halfhalf &= (pt or jit or onnx or engine) and device.type != 'cpu'  # FP16 supported on limited backends with CUDAif pt or jit:model.model.half() if half else model.model.float()# Dataloaderif webcam:view_img = check_imshow()cudnn.benchmark = True  # set True to speed up constant image size inferencedataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)bs = len(dataset)  # batch_sizeelse:dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)bs = 1  # batch_sizevid_path, vid_writer = [None] * bs, [None] * bs# Run inferencemodel.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half)  # warmupdt, seen = [0.0, 0.0, 0.0], 0for path, im, im0s, vid_cap, s in dataset:# 1,2,3,4分别代表左上,右上,右下,左下四个点坐标,即(480,270)(700,270)(700,810)(480,810)hl1 = 270 / 1080  # 左上纵坐标/图片高度wl1 = 620 / 1920  # 左上横坐标/图片宽度hl2 = 270 / 1080  # 右上横坐标/图片宽度wl2 = 820 / 1920  # 右上横坐标/图片宽度hl3 = 630 / 1080  # 右下横坐标/图片宽度wl3 = 820 / 1920  # 右下横坐标/图片宽度hl4 = 630 / 1080  # 左下横坐标/图片宽度wl4 = 620 / 1920  # 左下横坐标/图片宽度if webcam:for b in range(0, im.shape[0]):mask = np.zeros([im[b].shape[1], im[b].shape[2]], dtype=np.uint8)# mask[round(img[b].shape[1] * hl1):img[b].shape[1], round(img[b].shape[2] * wl1):img[b].shape[2]] = 255pts = np.array([[int(im[b].shape[2] * wl1), int(im[b].shape[1] * hl1)],  # pts1[int(im[b].shape[2] * wl2), int(im[b].shape[1] * hl2)],  # pts2[int(im[b].shape[2] * wl3), int(im[b].shape[1] * hl3)],  # pts3[int(im[b].shape[2] * wl4), int(im[b].shape[1] * hl4)]], np.int32)mask = cv2.fillPoly(mask, [pts], (255, 255, 255))imgc = im[b].transpose((1, 2, 0))imgc = cv2.add(imgc, np.zeros(np.shape(imgc), dtype=np.uint8), mask=mask)# cv2.imshow('1',imgc)im[b] = imgc.transpose((2, 0, 1))else:mask = np.zeros([im.shape[1], im.shape[2]], dtype=np.uint8)# mask[round(img.shape[1] * hl1):img.shape[1], round(img.shape[2] * wl1):img.shape[2]] = 255pts = np.array([[int(im.shape[2] * wl1), int(im.shape[1] * hl1)],  # pts1[int(im.shape[2] * wl2), int(im.shape[1] * hl2)],  # pts2[int(im.shape[2] * wl3), int(im.shape[1] * hl3)],  # pts3[int(im.shape[2] * wl4), int(im.shape[1] * hl4)]], np.int32)mask = cv2.fillPoly(mask, [pts], (255, 255, 255))img = im.transpose((1, 2, 0))img = cv2.add(img, np.zeros(np.shape(img), dtype=np.uint8), mask=mask)im = img.transpose((2, 0, 1))t1 = time_sync()im = torch.from_numpy(im).to(device)im = im.half() if half else im.float()  # uint8 to fp16/32im /= 255  # 0 - 255 to 0.0 - 1.0if len(im.shape) == 3:im = im[None]  # expand for batch dimt2 = time_sync()dt[0] += t2 - t1# Inferencevisualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else Falsepred = model(im, augment=augment, visualize=visualize)t3 = time_sync()dt[1] += t3 - t2# NMSpred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)dt[2] += time_sync() - t3# Second-stage classifier (optional)# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)# Process predictionsfor i, det in enumerate(pred):  # per imageseen += 1if webcam:  # batch_size >= 1p, im0, frame = path[i], im0s[i].copy(), dataset.counts += f'{i}: 'cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),cv2.FONT_HERSHEY_SIMPLEX,1.0, (255, 255, 0), 2, cv2.LINE_AA)pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1[int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2[int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3[int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4# pts = pts.reshape((-1, 1, 2))zeros = np.zeros((im0.shape), dtype=np.uint8)mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)cv2.polylines(im0, [pts], True, (255, 255, 0), 3)else:p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)cv2.putText(im0, "Detection_Region", (int(im0.shape[1] * wl1 - 5), int(im0.shape[0] * hl1 - 5)),cv2.FONT_HERSHEY_SIMPLEX,1.0, (255, 255, 0), 2, cv2.LINE_AA)pts = np.array([[int(im0.shape[1] * wl1), int(im0.shape[0] * hl1)],  # pts1[int(im0.shape[1] * wl2), int(im0.shape[0] * hl2)],  # pts2[int(im0.shape[1] * wl3), int(im0.shape[0] * hl3)],  # pts3[int(im0.shape[1] * wl4), int(im0.shape[0] * hl4)]], np.int32)  # pts4# pts = pts.reshape((-1, 1, 2))zeros = np.zeros((im0.shape), dtype=np.uint8)mask = cv2.fillPoly(zeros, [pts], color=(0, 165, 255))im0 = cv2.addWeighted(im0, 1, mask, 0.2, 0)cv2.polylines(im0, [pts], True, (255, 255, 0), 3)global person_countperson_count = 0p = Path(p)  # to Pathsave_path = str(save_dir / p.name)  # im.jpgtxt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txts += '%gx%g ' % im.shape[2:]  # print stringgn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwhimc = im0.copy() if save_crop else im0  # for save_cropannotator = Annotator(im0, line_width=line_thickness, example=str(names))if len(det):# Rescale boxes from img_size to im0 sizedet[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()# Print resultsfor c in det[:, -1].unique():n = (det[:, -1] == c).sum()  # detections per classs += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string# Write resultsfor *xyxy, conf, cls in reversed(det):if save_txt:  # Write to filexywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywhline = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label formatwith open(txt_path + '.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')if save_img or save_crop or view_img:  # Add bbox to imageif names[int(cls)] == "person":c = int(cls)  # integer classlabel = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')annotator.box_label(xyxy, label, color=colors(c, True))person_count += 1pygame.mixer.init()pygame.mixer.music.load('out.wav')pygame.mixer.music.set_volume(1)pygame.mixer.music.play()if save_crop:save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)# Stream resultsim0 = annotator.result()if view_img:text = 'person_num:%d ' % (person_count)cv2.putText(im0, text, (180, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)cv2.resizeWindow("Webcam", 1280, 720)cv2.moveWindow("Webcam", 0, 100)cv2.imshow("Webcam", im0)cv2.waitKey(1)# Save results (image with detections)if save_img:text = 'person_num:%d ' % (person_count)cv2.putText(im0, text, (180, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 3)#text = 'tie_num:%d ' % (tie_count)#cv2.putText(im0, text, (180, 120), cv2.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 5)if dataset.mode == 'image':cv2.imwrite(save_path, im0)else:  # 'video' or 'stream'if vid_path[i] != save_path:  # new videovid_path[i] = save_pathif isinstance(vid_writer[i], cv2.VideoWriter):vid_writer[i].release()  # release previous video writerif vid_cap:  # videofps = vid_cap.get(cv2.CAP_PROP_FPS)w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))else:  # streamfps, w, h = 30, im0.shape[1], im0.shape[0]save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videosvid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))vid_writer[i].write(im0)# Print time (inference-only)LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')# Print resultst = tuple(x / seen * 1E3 for x in dt)  # speeds per imageLOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)if save_txt or save_img:s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")if update:strip_optimizer(weights)  # update model (to fix SourceChangeWarning)def parse_opt():parser = argparse.ArgumentParser()parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')parser.add_argument('--source', type=str, default=ROOT / './data/images/1.mp4', help='file/dir/URL/glob, 0 for webcam')parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--view-img', action='store_true',default=True, help='show results')parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')parser.add_argument('--nosave', action='store_true', help='do not save images/videos')parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')parser.add_argument('--augment', action='store_true', help='augmented inference')parser.add_argument('--visualize', action='store_true', help='visualize features')parser.add_argument('--update', action='store_true', help='update all models')parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')parser.add_argument('--name', default='exp', help='save results to project/name')parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')opt = parser.parse_args()opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expandprint_args(FILE.stem, opt)return optdef main(opt):check_requirements(exclude=('tensorboard', 'thop'))run(**vars(opt))if __name__ == "__main__":opt = parse_opt()main(opt)

6.2 细节修改(可忽略)

到上述步骤就已经实现了单目测距过程,下边是一些小细节修改,可以不看
为了实时显示画面,对运行的py文件点击编辑配置,在形参那里输入–view-img --save-txt
在这里插入图片描述
但实时显示画面太大,我们对显示部分做了修改,这部分也可以不要,具体是把代码

if view_img:cv2.imshow(str(p), im0)cv2.waitKey(1)  # 1 millisecond

替换成

if view_img:cv2.namedWindow("Webcam", cv2.WINDOW_NORMAL)cv2.resizeWindow("Webcam", 1280, 720)cv2.moveWindow("Webcam", 0, 100)cv2.imshow("Webcam", im0)cv2.waitKey(1)

6. 实验效果

图片效果
请添加图片描述

视频效果

这篇关于YOLOv5区域检测计数+声音警报的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/830861

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

树莓派5_opencv笔记27:Opencv录制视频(无声音)

今日继续学习树莓派5 8G:(Raspberry Pi,简称RPi或RasPi)  本人所用树莓派5 装载的系统与版本如下:  版本可用命令 (lsb_release -a) 查询: Opencv 与 python 版本如下: 今天就水一篇文章,用树莓派摄像头,Opencv录制一段视频保存在指定目录... 文章提供测试代码讲解,整体代码贴出、测试效果图 目录 阶段一:录制一段

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

Temu官方宣导务必将所有的点位材料进行检测-RSL资质检测

关于饰品类产品合规问题宣导: 产品法规RSL要求 RSL测试是根据REACH法规及附录17的要求进行测试。REACH法规是欧洲一项重要的法规,其中包含许多对化学物质进行限制的规定和高度关注物质。 为了确保珠宝首饰的安全性,欧盟REACH法规规定,珠宝首饰上架各大电商平台前必须进行RSLReport(欧盟禁限用化学物质检测报告)资质认证,以确保产品不含对人体有害的化学物质。 RSL-铅,

[yolov5] --- yolov5入门实战「土堆视频」

1 项目介绍及环境配置 下载yolov5 tags 5.0源码,https://github.com/ultralytics/yolov5/tree/v5.0,解压 Pycharm 中创建conda虚拟环境 激活conda虚拟环境 根据作者提供的requirements.txt文件,pip install -r requirements.txt 如果作者没有提供requirement.txt文件