本文主要是介绍POJ 3264 Balanced Lineup (线段树单点更新 区间查询),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 36820 | Accepted: 17244 | |
Case Time Limit: 2000MS |
Description
For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.
Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
Input
Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i
Lines N+2.. N+ Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.
Output
Sample Input
6 3 1 7 3 4 2 5 1 5 4 6 2 2
Sample Output
6 3 0
Source
题目链接:http://poj.org/problem?id=3264
题目大意:给一组有序数列,求区间内最大值减最小值的值
题目分析:裸线段树单点更新,交的时候C++速度比G++快一倍
#include <cstdio>
#include <cstring>
#include <algorithm>
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
using namespace std;
int const INF = 0x3fffffff;
int const MAX = 50005;
int a[MAX], ma, mi;
struct node
{int l, r;int mi, ma;int mid(){return (l + r) / 2;}
}t[3 * MAX];void push_up(int rt)
{t[rt].ma = max(t[rt << 1].ma, t[rt << 1 | 1].ma);t[rt].mi = min(t[rt << 1].mi, t[rt << 1 | 1].mi);
}void Build(int l, int r, int rt)
{t[rt].l = l;t[rt].r = r;if(l == r){t[rt].ma = t[rt].mi = a[l];return;}else{int mid = t[rt].mid();Build(lson);Build(rson);push_up(rt);}
}void Query(int l, int r, int rt)
{if(t[rt].l == l && t[rt].r == r){ma = max(t[rt].ma, ma);mi = min(t[rt].mi, mi);return;}else{int mid = t[rt].mid();if(r <= mid)Query(l, r, rt << 1);else if(l > mid)Query(l, r, rt << 1 | 1);else{Query(lson);Query(rson);}}
}int main()
{int n, m;scanf("%d %d", &n, &m);for(int i = 1; i <= n; i++)scanf("%d", &a[i]);Build(1, n, 1);for(int i = 1; i <= m; i++){int l, r;scanf("%d %d", &l, &r);ma = -INF;mi = INF;Query(l, r, 1);printf("%d\n", ma - mi);}
}
这篇关于POJ 3264 Balanced Lineup (线段树单点更新 区间查询)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!