本文主要是介绍POJ 3070 Fibonacci (矩阵快速幂 Fibonacci数列新求法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 9974 | Accepted: 7115 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0
9
999999999
1000000000
-1
Sample Output
0
34
626
6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
题目链接:http://poj.org/problem?id=3070
题目大意:求Fibonacci数列的后四位
题目分析:矩阵已经给了,直接矩阵快速幂对10000取余
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int const MOD = 1e4;
struct matrix
{int m[5][5];
}a;matrix multiply(matrix x, matrix y)
{matrix ans;memset(ans.m, 0, sizeof(ans.m));for(int i = 1; i <= 2; i++)for(int j = 1; j <= 2; j++)if(x.m[i][j])for(int k = 1; k <= 2; k++)ans.m[i][k] = (ans.m[i][k] + x.m[i][j] * y.m[j][k]) % MOD;return ans;
}matrix quickmod(matrix a, int p)
{matrix ans;memset(ans.m, 0, sizeof(ans.m));for(int i = 1; i <= 2; i++)ans.m[i][i] = 1;while(p){if(p & 1)ans = multiply(ans, a);p >>= 1;a = multiply(a, a);}return ans;
}int main()
{ int n;matrix a;a.m[1][1] = 1; a.m[1][2] = 1;a.m[2][1] = 1;a.m[2][2] = 0;while(scanf("%d", &n) != EOF && n != -1){if(n == 0){printf("0\n");continue;}matrix ans = quickmod(a, n - 1);printf("%d\n", ans.m[1][1]);}
}
这篇关于POJ 3070 Fibonacci (矩阵快速幂 Fibonacci数列新求法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!