【运筹优化】子集和问题(Subset Sum Problems , SSP)介绍 + 动态规划求解 + Java代码实现

本文主要是介绍【运筹优化】子集和问题(Subset Sum Problems , SSP)介绍 + 动态规划求解 + Java代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、问题介绍
  • 二、动态规划求解思路
  • 三、Java代码实现


一、问题介绍

子集和问题(Subset Sum Problems , SSP),它是复杂性理论中最重要的问题之一。

SSP会给定一组整数 a 1 , a 2 , . . . . , a n a_1,a_2,....,a_n a1,a2,....,an ,最多 n n n 个整数,我们需要判断是否存在一个非空子集,使得子集的总和为 M M M 整数?如果存在则需要输出该子集。

例如,集合给定为 [ 5 , 2 , 1 , 3 , 9 ] [5,2,1,3,9] [5,2,1,3,9] ,子集之和为 9 9 9 ;答案是肯定的,因为子集 [ 5 , 3 , 1 ] [5,3,1] [5,3,1] 的总和等于 9 9 9

这是一个 N P NP NP 完全问题。是背包的特殊情况。

在这里插入图片描述

目的: 给定一组正整数和一个值 S 总和,找出数组中是否存在一个子集,其总和等于给定的总和 S。


二、动态规划求解思路

设 A 是包含“n”个非负整数的数组或集合。找到集合“A”的子集“x”,使得 x 的所有元素的总和等于 w,其中 x 是另一个输入(总和)。

例如:

A = [2, 3, 5, 7, 10]

总和 (w) = 14

首先,我们创建一个表。该列包含从 0 到 14 的值,而行包含给定集合的元素,如下所示:

在下表中:

i :它表示行。行表示元素。

j :它表示列。列表示总和。

在这里插入图片描述
我们将使用 1 作为真值,使用 0 作为假值。值 1 位于 0 和 2 列下,如下所示:

这里 i=1, a[i] =2

注:每列的填充规则如下:
所需总和 = j - 元素
A[i][j] = A[i-1][所需总和]

当 j = 1

所需总和 = 1 - 2 = -1;由于总和为负,因此如上表所示,在第 1 列下输入 0。

当 j = 2

所需总和 = 2 - 2 = 0;由于 sum 的值为零,因此我们将 1 放在第 2 列下,如上表所示。

我们将 0 放在总和大于 2 的列下,因为我们不能从元素 2 中得出总和超过 2。

考虑要素 3。

这里 i = 2, a[i] = 3

在这里插入图片描述
总和小于 3 的列将具有与前几列相同的值。

当 j = 3 时,总和 [j] = 3

所需总和 = 3 -3 = 0;由于总和为零,因此我们将 1 放在第 3 列下,如上表所示。

当 j = 4;总和[j] = 4

所需总和 = 4 - 3 = 1;由于总和为 1,因此我们移至前一行,即 i=1 和 j=1。a[1][1] 处的值为 0,因此我们将 0 放在 a[2][4] 处。

当 j = 5 时,总和 [j] = 5

所需总和 = 5 -3 = 2;sum 的值为 2,因此 a[1][2] 处的值等于 1。因此,a[2][5] 处的值将为 1。

当 j = 6 时,总和 [j] = 6

所需总和 = 6 -3 = 3;sum 的值为 3,因此 a[1][3] 处的值等于 0。因此,a[2][6] 处的值将为 0。

当 j = 7 时,总和 [7] = 7

所需总和 = 7 - 3 = 4;sum 的值为 4,因此 a[1][4] 处的值等于 0。因此,a[2][7] 处的值将为 0。

这样,我们从第 8 列到 14 列中获取值 0。

考虑要素 5。

这里 i=3, a[i] = 5

在这里插入图片描述
总和小于 5 的列将具有与前几列相同的值。

当 j = 5 时,总和 [j] = 5

所需总和 = 5-5 = 0;由于总和的值为 0;因此,A[2][5] 处的值等于 1。

当 j = 6 时,总和 [j] = 6

所需总和 = 6-5 = 1;sum 的值为 1,因此 a[2][1] 处的值等于 0;因此,a[3][6] 处的值等于 0。

当 j=7 时,总和 [j] = 7

所需总和 = 7-5 = 2;sum 的值为 2,因此 a[2][2] 处的值等于 1;因此,a[3][7] 处的值等于 1。

当 j=8 时,总和 [j] = 8

所需总和 = 8-5 = 3;sum 的值为 3,因此 a[2][3] 处的值等于 1;因此,a[3][8] 处的值等于 1。

当 j=9 时,总和 [j] =9

所需总和 = 9-5 = 4;sum 的值为 4,因此 a[2][4] 处的值等于 0;因此,a[3][9] 处的值等于 0。

这样,我们从第 10 列到 14 列中获取值。

考虑要素 7。

这里 i=4, a[i] =7

在这里插入图片描述
总和小于 7 的列将具有与前几列相同的值。

当 j=9 时,总和 [j] = 9

所需总和 = 9 - 7 = 2;sum 的值为 2,因此 a[3][2] 处的值等于 1;因此,a[4][9] 处的值等于 1。

当 j=10 时,总和 [j] = 10

所需总和 = 10 - 7= 3;sum 的值为 3,因此 a[3][3] 处的值等于 1;因此,a[4][10] 处的值等于 1。

当 j=11 时,总和 [j] =11

所需总和 = 11-7 = 4;sum 的值为 4,因此 a[3][4] 处的值等于 0;因此,a[4][11] 处的值等于 0。

当 j=12 时,总和 [j] = 12

所需总和 = 12-7 = 5;sum 的值为 5,因此 a[3][5] 处的值等于 1;因此,a[4][12] 处的值等于 1。

当 j=13 时,总和 [j] =13

所需总和 = 13 - 7 = 6;sum 的值为 6,因此 a[3][6] 处的值等于 0;因此,a[4][13] 处的值等于 0。

当 j=14 时,总和 [j] = 14

所需总和 = 14 - 7 = 7;sum 的值为 7,因此 a[3][7] 处的值等于 1;因此,a[4][14] 处的值等于 1。

考虑元素 10

这里 i=5, a[i] = 10

在这里插入图片描述

总和小于 10 的列将具有与前几列相同的值。

当 j = 10 时,总和 [j] = 10

所需总和 = 10 - 10 = 0;sum 的值为 0,因此 a[4][0] 处的值等于 1;因此,a[5][10] 处的值等于 1。

当 j = 11 时,总和 [j] = 11

所需总和 = 11 - 10 = 1;总和的值为 1,因此 a[4][1] 处的值等于 0;因此,a[5][11] 处的值等于 0。

当 j=12 时,总和 [j] = 12

所需总和 = 12-10 = 2;sum 的值为 2,因此 a[4][2] 处的值等于 1;因此,A[5][12] 处的值等于 1。

当 j=13 时,总和 [j] = 13

所需总和 = 13 - 10 = 3;sum 的值为 3,因此 a[4][3] 处的值等于 1;因此,a[5][13] 处的值等于 1。

为了确定上述给定的问题是否包含子集,我们需要检查最后一行和最后一列。如果值为 1,则表示至少存在一个子集。

我们基本上遵循三个条件,在表的单元格中写入 1:
• A[i] = j
• A[i-1][j] = 1
• A[i-1][j-A[i]] = 1


三、Java代码实现

测试案例

A = {2, 3, 5, 7, 10}
sum = 14

Java代码

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;/*** @Author:WSKH* @ClassName:SSP_DP* @ClassType:* @Description:* @Date:2022/12/18/18:42* @Email:1187560563@qq.com* @Blog:https://blog.csdn.net/weixin_51545953?type=blog*/
public class SSP_DP {public static void main(String[] args) {int sum = 14;int[] arr = new int[]{2, 3, 5, 7, 10};long s = System.currentTimeMillis();new SSP_DP().solve(arr, sum);System.out.println("用时: " + (System.currentTimeMillis() - s) / 1000d + " s");}static int totalWei = 32;static int arrLength;public void solve(int[] arr, int sum) {// 如果sum=0直接返回空集if (sum == 0) {System.out.println(new ArrayList<>());return;}// 深拷贝数组arr = arr.clone();// 升序排序数组Arrays.sort(arr);SubSolution[] dp = new SubSolution[sum + 1];arrLength = arr.length;for (int rowIndex = 0; rowIndex < arr.length; rowIndex++) {if (arr[rowIndex] > sum) {break;}// 遍历上一层除了0位置外,有1的位置if (rowIndex > 0) {for (int colIndex = sum - arr[rowIndex]; colIndex >= 1; colIndex--) {if (dp[colIndex] != null) {if (dp[colIndex + arr[rowIndex]] == null) {dp[colIndex + arr[rowIndex]] = new SubSolution(dp[colIndex].flag, rowIndex);}}}}// 将刚好等于的位置赋值if (dp[arr[rowIndex]] == null) {dp[arr[rowIndex]] = new SubSolution(rowIndex);}for (SubSolution subSolution : dp) {System.out.print((subSolution == null ? 0 : 1) + ",");}System.out.println();}if (dp[sum] != null) {int checkSum = 0;List<Integer> valueList = new ArrayList<>();for (int i = 0; i < arr.length; i++) {if ((dp[sum].flag[i / totalWei] & (1 << (i % totalWei))) != 0) {valueList.add(arr[i]);checkSum += arr[i];}}if (checkSum != sum) {throw new RuntimeException(valueList + " 的和不等于 " + sum);}System.out.println(valueList);} else {System.out.println(Arrays.toString(arr) + "中,没有和为" + sum + "的子集");}}public static class SubSolution {int[] flag;public SubSolution() {flag = new int[arrLength / totalWei + 1];}public SubSolution(int index) {flag = new int[arrLength / totalWei + 1];flag[index / totalWei] = (flag[index / totalWei] | (1 << index % totalWei));}public SubSolution(int[] flag, int index) {this.flag = flag.clone();this.flag[index / totalWei] = (this.flag[index / totalWei] | (1 << index % totalWei));}}}

输出

0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,
0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,
0,0,1,1,0,1,0,1,1,1,1,0,1,0,1,
0,0,1,1,0,1,0,1,1,1,1,0,1,1,1,
[2, 5, 7]
用时: 0.002 s

这篇关于【运筹优化】子集和问题(Subset Sum Problems , SSP)介绍 + 动态规划求解 + Java代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/829485

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,