大模型文本生成——解码策略(Top-k Top-p Temperature)

2024-03-20 04:44

本文主要是介绍大模型文本生成——解码策略(Top-k Top-p Temperature),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

{"top_k": 10,"temperature": 0.95,"num_beams": 1,"top_p": 0.8,"repetition_penalty": 1.5,"max_tokens": 30000,"message": [{"content": "你好!","role": "user"}]
}

在大模型训练好之后,如何对训练好的模型进行解码(decode)是一个火热的研究话题。

在自然语言任务中,我们通常使用一个预训练的大模型(比如GPT)来根据给定的输入文本(比如一个开头或一个问题)生成输出文本(比如一个答案或一个结尾)。为了生成输出文本,我们需要让模型逐个预测每个 token ,直到达到一个终止条件(如一个标点符号或一个最大长度)。在每一步,模型会给出一个概率分布,表示它对下一个单词的预测。例如,如果输入的文本是“我最喜欢的”,那么模型可能会给出下面的概率分布:

那么,我们应该如何从这个概率分布中选择下一个单词呢?以下是几种常用的方法:

  • 贪心解码(Greedy Decoding):直接选择概率最高的单词。这种方法简单高效,但是可能会导致生成的文本过于单调和重复。
  • 随机采样(Random Sampling):按照概率分布随机选择一个单词。这种方法可以增加生成的多样性,但是可能会导致生成的文本不连贯和无意义。
  • Beam Search:维护一个大小为 k 的候选序列集合,每一步从每个候选序列的概率分布中选择概率最高的 k 个单词,然后保留总概率最高的 k 个候选序列。这种方法可以平衡生成的质量和多样性,但是可能会导致生成的文本过于保守和不自然。

以上方法都有各自的问题,而 top-k 采样和 top-p 采样是介于贪心解码和随机采样之间的方法,也是目前大模型解码策略中常用的方法。

top-k采样

在上面的例子中,如果使用贪心策略,那么选择的 token 必然就是“女孩”。

贪心解码是一种合理的策略,但也有一些缺点。例如,输出可能会陷入重复循环。想想智能手机自动建议中的建议。当你不断地选择建议最高的单词时,它可能会变成重复的句子。

Top-k 采样是对前面“贪心策略”的优化,它从排名前 k 的 token 中进行抽样,允许其他分数或概率较高的token 也有机会被选中。在很多情况下,这种抽样带来的随机性有助于提高生成质量。

top-k 采样的思路是,在每一步,只从概率最高的 k 个单词中进行随机采样,而不考虑其他低概率的单词。例如,如果 k=2,那么我们只从女孩、鞋子中选择一个单词,而不考虑大象、西瓜等其他单词。这样可以避免采样到一些不合适或不相关的单词,同时也可以保留一些有趣或有创意的单词。

下面是 top-k 采样的例子:

通过调整 k 的大小,即可控制采样列表的大小。“贪心策略”其实就是 k = 1的 top-k 采样。

下面是top-k 的代码实现:

import torch
from labml_nn.sampling import Sampler# Top-k Sampler
class TopKSampler(Sampler):# k is the number of tokens to pick# sampler is the sampler to use for the top-k tokens# sampler can be any sampler that takes a logits tensor as input and returns a token tensor; e.g. `TemperatureSampler`.def __init__(self, k: int, sampler: Sampler):self.k = kself.sampler = sampler# Sample from logitsdef __call__(self, logits: torch.Tensor):# New logits filled with −∞; i.e. zero probabilityzeros = logits.new_ones(logits.shape) * float('-inf')# Pick the largest k logits and their indicesvalues, indices = torch.topk(logits, self.k, dim=-1)# Set the values of the top-k selected indices to actual logits.# Logits of other tokens remain −∞zeros.scatter_(-1, indices, values)# Sample from the top-k logits with the specified sampler.return self.sampler(zeros)

总结一下,top-k 有以下有点:

  • 它可以根据不同的输入文本动态调整候选单词的数量,而不是固定为 k 个。这是因为不同的输入文本可能会导致不同的概率分布,有些分布可能比较平坦,有些分布可能比较尖锐。如果分布比较平坦,那么前 k 个单词可能都有相近的概率,那么我们就可以从中进行随机采样;如果分布比较尖锐,那么前 k 个单词可能会占据绝大部分概率,那么我们就可以近似地进行贪心解码。
  • 它可以通过调整 k 的大小来控制生成的多样性和质量。一般来说,k 越大,生成的多样性越高,但是生成的质量越低;k 越小,生成的质量越高,但是生成的多样性越低。因此,我们可以根据不同的任务和场景来选择合适的k 值。
  • 它可以与其他解码策略结合使用,例如温度调节(Temperature Scaling)、重复惩罚(Repetition Penalty)、长度惩罚(Length Penalty)等,来进一步优化生成的效果。

但是 top-k 也有一些缺点,比如:

  • 它可能会导致生成的文本不符合常识或逻辑。这是因为 top-k 采样只考虑了单词的概率,而没有考虑单词之间的语义和语法关系。例如,如果输入文本是“我喜欢吃”,那么即使饺子的概率最高,也不一定是最合适的选择,因为可能用户更喜欢吃其他食物。
  • 它可能会导致生成的文本过于简单或无聊。这是因为 top-k 采样只考虑了概率最高的 k 个单词,而没有考虑其他低概率但有意义或有创意的单词。例如,如果输入文本是“我喜欢吃”,那么即使苹果、饺子和火锅都是合理的选择,也不一定是最有趣或最惊喜的选择,因为可能用户更喜欢吃一些特别或新奇的食物。

因此,我们通常会考虑 top-k 和其它策略结合,比如 top-p。

top-p采样

top-k 有一个缺陷,那就是“k 值取多少是最优的?”非常难确定。于是出现了动态设置 token 候选列表大小策略——即核采样(Nucleus Sampling)。

top-p 采样的思路是,在每一步,只从累积概率超过某个阈值 p 的最小单词集合中进行随机采样,而不考虑其他低概率的单词。这种方法也被称为核采样(nucleus sampling),因为它只关注概率分布的核心部分,而忽略了尾部部分。例如,如果 p=0.9,那么我们只从累积概率达到 0.9 的最小单词集合中选择一个单词,而不考虑其他累积概率小于 0.9 的单词。这样可以避免采样到一些不合适或不相关的单词,同时也可以保留一些有趣或有创意的单词。

下图展示了 top-p 值为 0.9 的 Top-p 采样效果:

top-p 值通常设置为比较高的值(如0.75),目的是限制低概率 token 的长尾。我们可以同时使用 top-k 和 top-p。如果 k 和 p 同时启用,则 p 在 k 之后起作用。

下面是 top-p 代码实现的例子:

import torch
from torch import nnfrom labml_nn.sampling import Samplerclass NucleusSampler(Sampler):"""## Nucleus Sampler"""def __init__(self, p: float, sampler: Sampler):""":param p: is the sum of probabilities of tokens to pick $p$:param sampler: is the sampler to use for the selected tokens"""self.p = pself.sampler = sampler# Softmax to compute $P(x_i | x_{1:i-1})$ from the logitsself.softmax = nn.Softmax(dim=-1)def __call__(self, logits: torch.Tensor):"""Sample from logits with Nucleus Sampling"""# Get probabilities $P(x_i | x_{1:i-1})$probs = self.softmax(logits)# Sort probabilities in descending ordersorted_probs, indices = torch.sort(probs, dim=-1, descending=True)# Get the cumulative sum of probabilities in the sorted ordercum_sum_probs = torch.cumsum(sorted_probs, dim=-1)# Find the cumulative sums less than $p$.nucleus = cum_sum_probs < self.p# Prepend ones so that we add one token after the minimum number# of tokens with cumulative probability less that $p$.nucleus = torch.cat([nucleus.new_ones(nucleus.shape[:-1] + (1,)), nucleus[..., :-1]], dim=-1)# Get log probabilities and mask out the non-nucleussorted_log_probs = torch.log(sorted_probs)sorted_log_probs[~nucleus] = float('-inf')# Sample from the samplersampled_sorted_indexes = self.sampler(sorted_log_probs)# Get the actual indexesres = indices.gather(-1, sampled_sorted_indexes.unsqueeze(-1))#return res.squeeze(-1)

Temperature采样

Temperature 采样受统计热力学的启发,高温意味着更可能遇到低能态。在概率模型中,logits 扮演着能量的角色,我们可以通过将 logits 除以温度来实现温度采样,然后将其输入 Softmax 并获得采样概率。

越低的温度使模型对其首选越有信心,而高于1的温度会降低信心。0温度相当于 argmax 似然,而无限温度相当于均匀采样。

Temperature 采样中的温度与玻尔兹曼分布有关,其公式如下所示:

\rho_i = \frac{1}{Q}e^{-\epsilon_i/kT}=\frac{e^{-\epsilon i/kT}}{\sum{j=1}^M e^{-\epsilon_j/kT}}\\

其中 

\rho_i

 是状态 

i

 的概率, 

\epsilon_i

 是状态 

i

 的能量, 

k

 是波兹曼常数, 

T

 是系统的温度, 

M

 是系统所能到达的所有量子态的数目。

有机器学习背景的朋友第一眼看到上面的公式会觉得似曾相识。没错,上面的公式跟 Softmax 函数 :

\text{Softmax}(z_i) = \frac{e^{z_i}}{\sum_{c=1}^Ce^{z_c}}\\

很相似,本质上就是在 Softmax 函数上添加了温度(T)这个参数。Logits 根据我们的温度值进行缩放,然后传递到 Softmax 函数以计算新的概率分布。

上面“我喜欢漂亮的___”这个例子中,初始温度 

T=1

 ,我们直观看一下 

T

 取不同值的情况下,概率会发生什么变化:

通过上图我们可以清晰地看到,随着温度的降低,模型愈来愈越倾向选择”女孩“;另一方面,随着温度的升高,分布变得越来越均匀。当 

T=50

 时,选择”西瓜“的概率已经与选择”女孩“的概率相差无几了。

通常来说,温度与模型的“创造力”有关。但事实并非如此。温度只是调整单词的概率分布。其最终的宏观效果是,在较低的温度下,我们的模型更具确定性,而在较高的温度下,则不那么确定

下面是 Temperature 采样的代码实现:

import torch
from torch.distributions import Categoricalfrom labml_nn.sampling import Samplerclass TemperatureSampler(Sampler):"""## Sampler with Temperature"""def __init__(self, temperature: float = 1.0):""":param temperature: is the temperature to sample with"""self.temperature = temperaturedef __call__(self, logits: torch.Tensor):"""Sample from logits"""# Create a categorical distribution with temperature adjusted logitsdist = Categorical(logits=logits / self.temperature)# Samplereturn dist.sample()

联合采样(top-k & top-p & Temperature)

通常我们是将 top-k、top-p、Temperature 联合起来使用。使用的先后顺序是 top-k->top-p->Temperature。

我们还是以前面的例子为例。

首先我们设置 top-k = 3,表示保留概率最高的3个 token。这样就会保留女孩、鞋子、大象这3个 token。

  • 女孩:0.664
  • 鞋子:0.199
  • 大象:0.105

接下来,我们可以使用 top-p 的方法,保留概率的累计和达到 0.8 的单词,也就是选取女孩和鞋子这两个 token。接着我们使用 Temperature = 0.7 进行归一化,变成:

  • 女孩:0.660
  • 鞋子:0.340

接着,我们可以从上述分布中进行随机采样,选取一个单词作为最终的生成结果。

参考

https://nn.labml.ai/sampling/index.html

Huggingface的GenerationConfig 中的top_k与top_p详细解读

Temperature

ChatGPT模型采样算法详解-阿里云开发者社区

ChatGPT模型采样算法详解_JarodYv的博客-CSDN博客

大语言模型参数说明(Temperature,Top p,Top k)

这篇关于大模型文本生成——解码策略(Top-k Top-p Temperature)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828321

相关文章

Python自动化提取多个Word文档的文本

《Python自动化提取多个Word文档的文本》在日常工作和学习中,我们经常需要处理大量的Word文档,本文将深入探讨如何利用Python批量提取Word文档中的文本内容,帮助你解放生产力,感兴趣的小... 目录为什么需要批量提取Word文档文本批量提取Word文本的核心技术与工具安装 Spire.Doc

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

SQL 注入攻击(SQL Injection)原理、利用方式与防御策略深度解析

《SQL注入攻击(SQLInjection)原理、利用方式与防御策略深度解析》本文将从SQL注入的基本原理、攻击方式、常见利用手法,到企业级防御方案进行全面讲解,以帮助开发者和安全人员更系统地理解... 目录一、前言二、SQL 注入攻击的基本概念三、SQL 注入常见类型分析1. 基于错误回显的注入(Erro

SpringBoot集成iText快速生成PDF教程

《SpringBoot集成iText快速生成PDF教程》本文介绍了如何在SpringBoot项目中集成iText9.4.0生成PDF文档,包括新特性的介绍、环境准备、Service层实现、Contro... 目录SpringBoot集成iText 9.4.0生成PDF一、iText 9新特性与架构变革二、环

idea-java序列化serialversionUID自动生成方式

《idea-java序列化serialversionUID自动生成方式》Java的Serializable接口用于实现对象的序列化和反序列化,通过将对象转换为字节流来存储或传输,实现Serializa... 目录简介实现序列化serialVersionUID配置使用总结简介Java.io.Seripyth

Java中的随机数生成案例从范围字符串到动态区间应用

《Java中的随机数生成案例从范围字符串到动态区间应用》本文介绍了在Java中生成随机数的多种方法,并通过两个案例解析如何根据业务需求生成特定范围的随机数,本文通过两个实际案例详细介绍如何在java中... 目录Java中的随机数生成:从范围字符串到动态区间应用引言目录1. Java中的随机数生成基础基本随

Java领域模型示例详解

《Java领域模型示例详解》本文介绍了Java领域模型(POJO/Entity/VO/DTO/BO)的定义、用途和区别,强调了它们在不同场景下的角色和使用场景,文章还通过一个流程示例展示了各模型如何协... 目录Java领域模型(POJO / Entity / VO/ DTO / BO)一、为什么需要领域模

C#自动化生成PowerPoint(PPT)演示文稿

《C#自动化生成PowerPoint(PPT)演示文稿》在当今快节奏的商业环境中,演示文稿是信息传递和沟通的关键工具,下面我们就深入探讨如何利用C#和Spire.Presentationfor.NET... 目录环境准备与Spire.Presentation安装核心操作:添加与编辑幻灯片元素添加幻灯片文本操

深入理解Redis线程模型的原理及使用

《深入理解Redis线程模型的原理及使用》Redis的线程模型整体还是多线程的,只是后台执行指令的核心线程是单线程的,整个线程模型可以理解为还是以单线程为主,基于这种单线程为主的线程模型,不同客户端的... 目录1 Redis是单线程www.chinasem.cn还是多线程2 Redis如何保证指令原子性2.

Redis中删除策略的几种实现方式

《Redis中删除策略的几种实现方式》本文详细介绍了Redis的过期键删除策略和内存淘汰策略,过期键删除策略包括定时删除、惰性删除和定期删除,具有一定的参考价值,感兴趣的可以了解一下... 目录前言一、设计背景:为什么需要删除策略?二、第一类:过期键的 3 种核心删除策略1. 定时删除(Timed Dele