【YOLOv5改进系列(2)】高效涨点----Wise-IoU详细解读及使用Wise-IoU(WIOU)替换CIOU

本文主要是介绍【YOLOv5改进系列(2)】高效涨点----Wise-IoU详细解读及使用Wise-IoU(WIOU)替换CIOU,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述


WIOU损失函数替换

  • 🚀🚀🚀前言
  • 一、1️⃣ Wise-IoU解读---基于动态非单调聚焦机制的边界框损失
    • 1.1 🎓 介绍
    • 1.2 ✨WIOU解决的问题
    • 1.3 ⭐️论文实验结果
    • 1.4 🎯论文方法
      • 1.4.1☀️Wise-IoU v1
      • 1.4.2☀️Wise-IoU v2
      • 1.4.3☀️Wise-IoU v3
  • 二、2️⃣如何添加WIOU损失函数
    • 2.1 🎓 修改bbox_iou函数
    • 2.2 ✨修改__call__中iou函数
  • 三、3️⃣实验测试结果


在这里插入图片描述

👀🎉📜系列文章目录

【yolov5-v6.0详细解读】
【目标检测—IOU计算详细解读(IoU、GIoU、DIoU、CIoU、EIOU、Focal-EIOU、SIOU、WIOU)】
【YOLOv5改进系列(1)】高效涨点----使用EIoU、Alpha-IoU、SIoU、Focal-EIOU替换CIou

🚀🚀🚀前言

在上一篇文章使用了EIoU、Alpha-IoU、SIoU、Focal-EIOU替换yolov5中默认的CIou损失,发现Focal-EIOU对于钢轨表面缺陷识别的提升效果最好,将map@0.5提升到了81.1%,这节使用Wise-IoU的三个版本(分别是v1、v2、v3)去替换CIOU损失,来观察不同类别的map@0.5变化。其中使用Wise-IoU v1方法将钢轨表面缺陷数据集map@50从77.9%提升到了86.3%,将近提升了10个百分点


一、1️⃣ Wise-IoU解读—基于动态非单调聚焦机制的边界框损失

1.1 🎓 介绍

📜该论文是2023年8月发表在arXiv上;
论文连接:Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism

🚀目标检测作为计算机视觉的核心问题,其检测性能依赖于损失函数的设计。边界框损失函数作为目标检测损失函数的重要组成部分,其良好的定义将为目标检测模型带来显著的性能提升。近年来的研究大多假设训练数据中的示例有较高的质量,致力于强化边界框损失的拟合能力。但我们注意到目标检测训练集中含有低质量示例,如果一味地强化边界框对低质量示例的回归,显然会危害模型检测性能的提升。Focal-EIoU v1 被提出以解决这个问题,但由于其聚焦机制是静态的,并未充分挖掘非单调聚焦机制的潜能。

⭐️基于这个观点,我们提出了动态非单调的聚焦机制,设计了 Wise-IoU (WIoU)。动态非单调聚焦机制使用“离群度”替代 IoU 对锚框进行质量评估,并提供了明智的梯度增益分配策略。该策略在降低高质量锚框的竞争力的同时,也减小了低质量示例产生的有害梯度。这使得 WIoU 可以聚焦于普通质量的锚框,并提高检测器的整体性能。将WIoU应用于最先进的单级检测器 YOLOv7 时,在 MS-COCO 数据集上的 AP-75 从 53.03% 提升到 54.50%

目前的Wise-IoU一共有三个版本分别是v1、v2、v3=

1.2 ✨WIOU解决的问题

🔥在数据标准的过程中,存在一下物体标准的不够正确,会有一些目标物体标注的质量很差,如下:
在这里插入图片描述
一个性能良好的模型在为低质量示例生成高质量锚框时会产生较大的 L I o U \mathcal{L}_{I o U} LIoU(iou损失)。如果单调 FM 为这些锚框分配较大的梯度增益,则模型的学习将受到损害。

在性能提升上,数据集的标注质量越差 (当然差到一定程度就不叫数据集了),WIoU 相对其它边界框损失的表现越好。

1.3 ⭐️论文实验结果

☀️CIoU、SIoU 的 v2 使用和 WIoU v2 一致的单调聚焦机制,v3 使用和 WIoU v3 一致的动态非单调聚焦机制,详见论文的消融实验,在计算速度上,WIoU 所增加的计算成本主要在于聚焦系数的计算、IoU 损失的均值统计。在实验条件相同时,WIoU 因为没有对纵横比进行计算反而有更快的速度,WIoU 的计算耗时为 CIoU 的 87.2%。

对比CIOU和SIOU等方法,WIOU的AP50要优于之前的边界框损失。
在这里插入图片描述

1.4 🎯论文方法

🚀该本文所涉及的聚焦机制有以下几种:

  • 静态:当边界框的 IoU 为某一指定值时有最高的梯度增益,如 Focal EIoU v1
  • 动态:享有最高梯度增益的边界框的条件处于动态变化中,如 WIoU v3
  • 单调:梯度增益随损失值的增加而单调增加,如 Focal loss
  • 非单调:梯度增益随损失值的增加呈非单调变化

WIoU v1 构造了基于注意力的边界框损失,WIoU v2 和 v3 则是在此基础上通过构造梯度增益 (聚焦系数) 的计算方法来附加聚焦机制。

1.4.1☀️Wise-IoU v1

由于训练数据不可避免地包含低质量示例,距离长宽比等几何因素会加剧对低质量示例的惩罚,从而降低模型的泛化性能。一个好的损失函数应该在锚框与目标框重合良好时削弱几何因素的惩罚,并且较少的训练干预将使模型获得更好的泛化能力。基于此,我们构建距离注意力,并获得具有两层注意力机制的WIoU v1:

  • R W IoU  ∈ [ 1 , e ) \mathcal{R}_{W \text { IoU }} \in[1, e) RW IoU [1,e) :显著放大普通质量锚框的 L I o U \mathcal{L}_{I o U} LIoU
  • L I o U ∈ [ 0 , 1 ] \mathcal{L}_{I o U} \in[0,1] LIoU[0,1]:显着降低高质量anchor box的RWIoU,并且当anchor box与目标框重合良好时,它更注重中心点之间的距离。

L W I o U v 1 = R W I o U L I o U R W I o U = exp ⁡ ( ( x − x g t ) 2 + ( y − y g t ) 2 ( W g 2 + H g 2 ) ∗ ) \begin{aligned}&\mathcal{L}_{WIoUv1}=\mathcal{R}_{WIoU}\mathcal{L}_{IoU}\\&\mathcal{R}_{WIoU}=\exp(\frac{(x-x_{gt})^2+(y-y_{gt})^2}{(W_g^2+H_g^2)^*})\end{aligned} LWIoUv1=RWIoULIoURWIoU=exp((Wg2+Hg2)(xxgt)2+(yygt)2)

其中,Wg,Hg是最小的封闭框的大小。为了防止RWIoU产生阻碍收敛的梯度,Wg,Hg从计算图中分离出来(上标∗表示此操作)。因为它有效地消除了阻碍收敛的因素,所以没有引入新的度量,比如宽高比。
在这里插入图片描述

1.4.2☀️Wise-IoU v2

🚀Focal Loss 设计了一种针对交叉熵的单调聚焦机制,有效降低了简单示例对损失值的贡献。这使得模型能够聚焦于困难示例,获得分类性能的提升。该论文类似地构造了单调聚焦系数 L I o U γ ∗ \mathcal{L}_{IoU}^{\gamma*} LIoUγ L W I o U v 1 \mathcal{L}_{WIoUv1} LWIoUv1
L W I o U v 2 = L I o U γ ∗ L W I o U v 1 , γ > 0 \mathcal{L}_{WIoUv2}=\mathcal{L}_{IoU}^{\gamma*}\mathcal{L}_{WIoUv1},\gamma>0 LWIoUv2=LIoUγLWIoUv1,γ>0

由于增加了聚焦系数,WIoU v2反向传播的梯度也发生了变化:
∂ L W I o U v 2 ∂ L I o U = L I o U γ ∗ ∂ L W I o U v 1 ∂ L I o U , γ > 0 \frac{\partial\mathcal{L}_{WIoUv2}}{\partial\mathcal{L}_{IoU}}=\mathcal{L}_{IoU}^{\gamma*}\frac{\partial\mathcal{L}_{WIoUv1}}{\partial\mathcal{L}_{IoU}},\gamma>0 LIoULWIoUv2=LIoUγLIoULWIoUv1,γ>0

❗️注意,梯度增益为 r = L I o U γ ∗ ∈ [ 0 , 1 ] r=\mathcal{L}_{IoU}^{\gamma*}\in[0,1] r=LIoUγ[0,1]。在模型训练过程中,梯度增益随着 L I o U \mathcal{L}_{I o U} LIoU的减小而减小,导致训练后期收敛速度较慢。因此,引入 L I o U \mathcal{L}_{I o U} LIoU均值作为归一化因子:
L W I o U v 2 = ( L I o U ∗ L I o U ‾ ) γ L W I o U v 1 \mathcal{L}_{WIoUv2}=(\frac{\mathcal{L}_{IoU}^*}{\overline{\mathcal{L}_{IoU}}})^\gamma\mathcal{L}_{WIoUv1} LWIoUv2=(LIoULIoU)γLWIoUv1

🔥其中 L I o U ‾ \overline{{\mathcal{L}_{IoU}}} LIoU是具有动量m的指数移动平均值。动态更新归一化因子使梯度增益 r = ( L I o U ∗ L I o U ‾ ) γ r=(\frac{\mathcal{L}_{IoU}^{*}}{\overline{\mathcal{L}_{IoU}}})^{\gamma} r=(LIoULIoU)γ总体保持在高水平,这解决了训练后期收敛缓慢的问题。

1.4.3☀️Wise-IoU v3

动态非单调FM:锚框的离群度用 L I o U \mathcal{L}_{I o U} LIoU L I o U ‾ \overline{{\mathcal{L}_{IoU}}} LIoU的比值表示:
在这里插入图片描述

🚀离群值小意味着锚框是高质量的。我们为其分配一个小的梯度增益,以便将== BBR (边界框回归)==集中在普通质量的锚框上。此外,为异常值较大的锚框分配较小的梯度增益将有效防止低质量示例产生较大的有害梯度。我们使用 β 构造一个非单调聚焦系数并将其应用于 WIoU v1:
在这里插入图片描述

离群度β梯度增益r的映射,由超参数α、δ控制。不同的超参数可能适用于不同的模型和数据集,需要自行调整 _scaled_loss 的缺省值以找到最优解。

在这里插入图片描述
其中,当 β = δ 时,δ 使得 r = 1。如图所示,当锚框的离群度满足β=C(C为常数值)时,锚框将享有最高的梯度增益。由于 L I o U \mathcal{L}_{I o U} LIoU是动态的,因此锚框的质量划分标准也是动态的,这使得 WIoU v3 能够在每一个时刻做出最符合当前情况的梯度增益分配策略。

二、2️⃣如何添加WIOU损失函数

2.1 🎓 修改bbox_iou函数

📌首先找到utils文件夹下的metrics.py文件,然后找到该python文件下的bbox_iou函数

在这里插入图片描述

📌然后将原始的bbox_iou函数代码注释掉,替换成如下代码,分别是WIoU_Scale类和bbox_iou函数,其中WIoU_Scale类是相关配置参数,需要注意monotonous这个参数,当其设置不同参数所表示的WIoU的不同版本

  • monotonous =None:表示Wise-IoU v1
  • monotonous =True:表示Wise-IoU v2
  • monotonous =False:表示Wise-IoU v3
class WIoU_Scale:''' monotonous: {None: origin v1True: monotonic FM v2False: non-monotonic FM v3}momentum: The momentum of running mean'''iou_mean = 1.monotonous = False_momentum = 1 - 0.5 ** (1 / 7000)_is_train = Truedef __init__(self, iou):self.iou = iouself._update(self)@classmethoddef _update(cls, self):if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \cls._momentum * self.iou.detach().mean().item()@classmethoddef _scaled_loss(cls, self, gamma=1.9, delta=3):if isinstance(self.monotonous, bool):if self.monotonous:return (self.iou.detach() / self.iou_mean).sqrt()else:beta = self.iou.detach() / self.iou_meanalpha = delta * torch.pow(gamma, beta - delta)return beta / alphareturn 1def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)# Get the coordinates of bounding boxesif xywh:  # transform from xywh to xyxy(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_else:  # x1, y1, x2, y2 = box1b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)# Intersection areainter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)# Union Areaunion = w1 * h1 + w2 * h2 - inter + epsif scale:self = WIoU_Scale(1 - (inter / union))# IoU# iou = inter / union # ori iouiou = torch.pow(inter/(union + eps), alpha) # alpha iouif CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) widthch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex heightif CIoU or DIoU or EIoU or SIoU or WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squaredrho2 = (((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4) ** alpha  # center dist ** 2if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)with torch.no_grad():alpha_ciou = v / (v - iou + (1 + eps))if Focal:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(inter/(union + eps), gamma)  # Focal_CIoUelse:return iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoUelif EIoU:rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2cw2 = torch.pow(cw ** 2 + eps, alpha)ch2 = torch.pow(ch ** 2 + eps, alpha)if Focal:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter/(union + eps), gamma) # Focal_EIouelse:return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIouelif SIoU:# SIoU Loss https://arxiv.org/pdf/2205.12740.pdfs_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + epss_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + epssigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)sin_alpha_1 = torch.abs(s_cw) / sigmasin_alpha_2 = torch.abs(s_ch) / sigmathreshold = pow(2, 0.5) / 2sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)rho_x = (s_cw / cw) ** 2rho_y = (s_ch / ch) ** 2gamma = angle_cost - 2distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)if Focal:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(inter/(union + eps), gamma) # Focal_SIouelse:return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIouelif WIoU:if Focal:raise RuntimeError("WIoU do not support Focal.")elif scale:return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp((rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051else:return iou, torch.exp((rho2 / c2)) # WIoU v1if Focal:return iou - rho2 / c2, torch.pow(inter/(union + eps), gamma)  # Focal_DIoUelse:return iou - rho2 / c2  # DIoUc_area = cw * ch + eps  # convex areaif Focal:return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter/(union + eps), gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdfelse:return iou - torch.pow((c_area - union) / c_area + eps, alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdfif Focal:return iou, torch.pow(inter/(union + eps), gamma)  # Focal_IoUelse:return iou  # IoU

🔥温馨提示WIOU和Focal不能同时使用,两者是互斥的,所以不能使用Focal项,在代码中也体现出来。

在这里插入图片描述

2.2 ✨修改__call__中iou函数

📌找到utils文件夹下面的loss.py损失函数计算文件,在该文件中找到ComputeLoss类下面的__call__函数,在__call__()函数里面找到红框部分的代码。

在这里插入图片描述

📌将红框内容替换成如下代码:

# ============替换WIoU之后的代码====================
iou = bbox_iou(pbox, tbox[i], WIoU=True, scale=True)
if type(iou) is tuple:if len(iou) == 2:lbox += (iou[1].detach().squeeze() * (1 - iou[0].squeeze())).mean()iou = iou[0].squeeze()else:lbox += (iou[0] * iou[1]).mean()iou = iou[2].squeeze()
else:lbox += (1.0 - iou.squeeze()).mean()  # iou lossiou = iou.squeeze()# ==============================================

❗️注意:scale需要设置为True,它是wiou中的一个缩放参数

三、3️⃣实验测试结果

🚀 这里一共做了三次实验,分别是Wise-IoU v1、Wise-IoU v2、Wise-IoU v3三个不同版本方法训练钢轨表面疵点的结果。

原始CIOU实验结果
F1置信度分数为0.71、map@0.5=0.779
在这里插入图片描述
Wise-IoU v1实验结果
F1置信度分数为0.72、map@0.5=0.863,F1置信度分数变化不大,但是map值增加最多
在这里插入图片描述
Wise-IoU v2实验结果
F1置信度分数为0.76、map@0.5=0.841,虽然map值没有 v1提升的那么大,但是F1置信度分数增长最多
在这里插入图片描述
Wise-IoU v3实验结果
F1置信度分数为0.74、map@0.5=0.844。
在这里插入图片描述
总结
🚀 不管是Wise-IoU 哪一个版本,对于数据集的精确度、召回率、map值等指标都有所提升。

在这里插入图片描述


在这里插入图片描述

这篇关于【YOLOv5改进系列(2)】高效涨点----Wise-IoU详细解读及使用Wise-IoU(WIOU)替换CIOU的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/828080

相关文章

C语言中联合体union的使用

本文编辑整理自: http://bbs.chinaunix.net/forum.php?mod=viewthread&tid=179471 一、前言 “联合体”(union)与“结构体”(struct)有一些相似之处。但两者有本质上的不同。在结构体中,各成员有各自的内存空间, 一个结构变量的总长度是各成员长度之和。而在“联合”中,各成员共享一段内存空间, 一个联合变量

Tolua使用笔记(上)

目录   1.准备工作 2.运行例子 01.HelloWorld:在C#中,创建和销毁Lua虚拟机 和 简单调用。 02.ScriptsFromFile:在C#中,对一个lua文件的执行调用 03.CallLuaFunction:在C#中,对lua函数的操作 04.AccessingLuaVariables:在C#中,对lua变量的操作 05.LuaCoroutine:在Lua中,

Vim使用基础篇

本文内容大部分来自 vimtutor,自带的教程的总结。在终端输入vimtutor 即可进入教程。 先总结一下,然后再分别介绍正常模式,插入模式,和可视模式三种模式下的命令。 目录 看完以后的汇总 1.正常模式(Normal模式) 1.移动光标 2.删除 3.【:】输入符 4.撤销 5.替换 6.重复命令【. ; ,】 7.复制粘贴 8.缩进 2.插入模式 INSERT

VMware9.0详细安装

双击VMware-workstation-full-9.0.0-812388.exe文件: 直接点Next; 这里,我选择了Typical(标准安装)。 因为服务器上只要C盘,所以我选择安装在C盘下的vmware文件夹下面,然后点击Next; 这里我把√取消了,每次启动不检查更新。然后Next; 点击Next; 创建快捷方式等,点击Next; 继续Cont

Lipowerline5.0 雷达电力应用软件下载使用

1.配网数据处理分析 针对配网线路点云数据,优化了分类算法,支持杆塔、导线、交跨线、建筑物、地面点和其他线路的自动分类;一键生成危险点报告和交跨报告;还能生成点云数据采集航线和自主巡检航线。 获取软件安装包联系邮箱:2895356150@qq.com,资源源于网络,本介绍用于学习使用,如有侵权请您联系删除! 2.新增快速版,简洁易上手 支持快速版和专业版切换使用,快速版界面简洁,保留主

如何免费的去使用connectedpapers?

免费使用connectedpapers 1. 打开谷歌浏览器2. 按住ctrl+shift+N,进入无痕模式3. 不需要登录(也就是访客模式)4. 两次用完,关闭无痕模式(继续重复步骤 2 - 4) 1. 打开谷歌浏览器 2. 按住ctrl+shift+N,进入无痕模式 输入网址:https://www.connectedpapers.com/ 3. 不需要登录(也就是

(超详细)YOLOV7改进-Soft-NMS(支持多种IoU变种选择)

1.在until/general.py文件最后加上下面代码 2.在general.py里面找到这代码,修改这两个地方 3.之后直接运行即可

YOLOv8改进 | SPPF | 具有多尺度带孔卷积层的ASPP【CVPR2018】

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转 Atrous Spatial Pyramid Pooling (ASPP) 是一种在深度学习框架中用于语义分割的网络结构,它旨

Toolbar+DrawerLayout使用详情结合网络各大神

最近也想搞下toolbar+drawerlayout的使用。结合网络上各大神的杰作,我把大部分的内容效果都完成了遍。现在记录下各个功能效果的实现以及一些细节注意点。 这图弹出两个菜单内容都是仿QQ界面的选项。左边一个是drawerlayout的弹窗。右边是toolbar的popup弹窗。 开始实现步骤详情: 1.创建toolbar布局跟drawerlayout布局 <?xml vers

Java注解详细总结

什么是注解?         Java注解是代码中的特殊标记,比如@Override、@Test等,作用是:让其他程序根据注解信息决定怎么执行该程序。         注解不光可以用在方法上,还可以用在类上、变量上、构造器上等位置。 自定义注解  现在我们自定义一个MyTest注解 public @interface MyTest{String aaa();boolean bbb()