AI大模型额外学习一:斯坦福AI西部世界小镇笔记(包括部署和源码分析)

本文主要是介绍AI大模型额外学习一:斯坦福AI西部世界小镇笔记(包括部署和源码分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一、简单介绍
      • 1)项目代码介绍
      • 2)重新播放模拟
      • 3)适当修改分叉模拟
    • 二、部署斯坦福小镇Demo
      • 1)准备工作
      • 2)解决遇到的bug
      • 3)启动服务器和前端
    • 三、源码剖析
      • 1)主题顺序

github链接

一、简单介绍

①背景介绍
This repository accompanies our research paper titled “Generative Agents: Interactive Simulacra of Human Behavior.” It contains our core simulation module for generative agents—computational agents that simulate believable human behaviors—and their game environment.

②总体逻辑
让小镇的NPC自由交流、开party、生活有条不紊
在这里插入图片描述
③总结:
Ai会感知周边环境,并将视野里发生的事件记录下来,加入自己的记忆流。之后,不论是Ai计划要做的事,还是对外界的反应,都会受到这个记忆的影响,并依靠ChatGPT进行决策,最后决策的事件也会加入记忆流,形成新的记忆。让NPC具备记忆系统,并依靠大语言模型来帮助NPC做出行动决策

https://github.com/joonspk-research/generative_agents/tree/main
https://www.zhihu.com/question/425708656
https://github.com/joonspk-research/generative_agents/tree/main
https://github.com/search?q=generative-agents&type=repositories

1)项目代码介绍

①项目有后端服务器backend_server和前端服务器frontend_server
②storage会保存程序运行的记录信息

2)重新播放模拟

打开浏览器,输入

http://localhost:8000/replay/<simulation-name>/<starting-time_step>

3)适当修改分叉模拟

在这里插入图片描述
这里的模拟是Isabella,scratch.json里面包括人物性格描述、居住地点、生活方式等,
spatial_memory.json里面还有房间布局等等

二、部署斯坦福小镇Demo

1)准备工作

①安装aneconda
②下载仓库代码

git clone https://github.com/joonspk-research/generative_agents.gitcd    generative_agents

③用vscode打开generative_agents目录
在这里插入图片描述
④在reverie目录的backend_server下载创建文件utils.py文件,填入以下内容
在这里插入图片描述

# Copy and paste your OpenAI API 
Keyopenai_api_key ="<Your OpenAI API>"
# Put your name
key_owner = "<Name>"maze assets loc ="../../enviroment/frontend_server/static_dirs/assets"
envircenv_matrix=f"{maze_assets_loc}/the_ville/matrix"
env_visuals =f"{maze assets loc}/the_ville/visuals"fs_storage ="../../environment/frontend server/storage"
fs_temp_storage ="../../environment/frontend_server/temp_storage"collision block id ="32125'# Verbose
debug = True

⑤填入OPEN AI API Keys和秘钥的名字
在这里插入图片描述

⑥创建新conda环境

conda create -n genagents python=3.11.4#激活新环境
conda activate genagents

2)解决遇到的bug

①pillow需要更新到最新的从8.4.0改到9.5.0
在这里插入图片描述

python -m pip install -r requirements.txt

②打开backend_server目录下的reverie.py文件,跳转400行
在这里插入图片描述

curr_move_path=f"{sim_folder}/movement"
#If the folder doesn't exist, we create it
if not os.path.exists(curr_move_path):os.makedirs(curr_move_path)

3)启动服务器和前端

①切换到前端目录,然后运行脚本

cd environment/frontend_server
python   manage.py runserver

②打开浏览器,输入

1.7.0.0.1:8000

在这里插入图片描述

有以上图片则表示启动成功

可以看到前端url的地址是

127.0.0.1:8000

③启动新终端来开启服务器

cd generative_agents
conda activate genagents
cd reverie/backend_server#准备开启服务器
python reverie.py

④回答要进入的分叉模拟(forked simulation):
现在是用现有的模板做三个代理(agent)

base_the_ville_sabella_maria_klaus

在这里插入图片描述
接着命名这个分叉模拟,随意,就叫test
在这里插入图片描述
⑤先跑3步,注意这里的步数,如果跑太多,token消耗的次数越多,3步就几刀
就可看到输出:
在这里插入图片描述

三、源码剖析

1)主题顺序

  • 简短说明
    ①根据填入的演变次数,来决定循环的次数
    ②便利所有的agent,每个agent执行自己的plan函数,也就是每个人作为一个agent
    ③根据第二步拿到的计划,然后执行计划
    ④执行计划之后,先看初始地点有那些人,然后利用prompt去跟这些人互动相互交流,跟同地点的人互动之后再用prompt修改当前的做事计划,然后让别人知道我在干嘛
    ⑤然后根据之前的今日的计划安排把自己以往的记忆用prompt进行评分排序
    (比如做瑜伽重要,就排前面)
    ⑥根据自己的计划和这个地方的场所列表,用promopt对要去的地方打分,就可以去那个排名第一的地方了

  • 详细说明

①根据填入的演变次数,来决定循环的次数

for repeat in range(repeats):....

②便利所有的agent,每个agent执行自己的plan函数,也就是每个人作为一个agent

for agent in agents:agent.plan(global_time,prompt_meta)

而每个agent都是由每个人的名字、描述、初始出生地点(从simulation_config.json里面读取,team_people都是镇上的人)构造出来
在这里插入图片描述
而这个plan函数就是给OpenAI接口一个prompt,如下:
在这里插入图片描述
根据今天时间写下今天的每小时计划安排
③根据第二步拿到的计划,然后执行计划
在这里插入图片描述
④执行计划之后,先看初始地点有那些人,然后利用prompt去跟这些人互动相互交流,跟同地点的人互动之后再用prompt修改当前的做事计划,然后让别人知道我在干嘛
在这里插入图片描述
⑤然后根据之前的今日的计划安排把自己以往的记忆用prompt进行评分排序
(比如做瑜伽重要,就排前面)
在这里插入图片描述

⑥根据自己的计划和这个地方的场所列表,用promopt对要去的地方打分,就可以去那个排名第一的地方了
在这里插入图片描述

这篇关于AI大模型额外学习一:斯坦福AI西部世界小镇笔记(包括部署和源码分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/827626

相关文章

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动