[LeetCode]40.最小的k个数(TopK问题。通过维护堆、优先队列、快排思想等解决方法)

本文主要是介绍[LeetCode]40.最小的k个数(TopK问题。通过维护堆、优先队列、快排思想等解决方法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小的k个数

输入整数数组 arr ,找出其中最小的 k 个数。例如,输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。

示例 1:

输入:arr = [3,2,1], k = 2
输出:[1,2] 或者 [2,1]

示例 2:

输入:arr = [0,1,2,1], k = 1
输出:[0]

限制:

0 <= k <= arr.length <= 10000
0 <= arr[i] <= 10000




思路

1.暴力法,先对数组进行排序(各种排序方法),再取出前k个数。

public int[] getLeastNumbers(int[] arr, int k) {Arrays.sort(arr);int[] ints = new int[k];for (int i = 0; i < k - 1; i++) {ints[i]=arr[i];}return ints;
}

2.建立大根堆解决前K小问题.(小根堆解决前K大问题)。维护一个大根堆,若堆的大小小于K,将当前值放入队中。否则判断当前值与堆顶元素的大小,如果当前值小于堆顶元素,再将当前值放入堆中,每放入一个值后,再要调整成为大根堆。

    public  int[] getLeastNumbers(int[] arr,int k) {if (k == 0 || arr.length == 0) {return new int[0];}int[] ints = Arrays.copyOf(arr, k);//构建k个数的大根堆,堆顶为最大的数,for循环确保每个子堆都是大根堆,至少有ints.length/ 2个子堆。for (int i =ints.length/ 2; i >= 0; i--) {setHeap(ints, i, k);}//每次取数组中剩下的数与堆顶的数比较for (int i = k; i <arr.length; i++) {//如果数组中的数比堆顶的数小,则放入堆顶,再构建一次大根堆if (ints[0]>arr[i]){ints[0]=arr[i];setHeap(ints,0,k);}}return ints;}public  void  setHeap(int [] array,int parent,int length){int temp=array[parent];int child=parent*2+1;//循环判断父节点的值是否小于子节点,是则替换while (length>child){//取出子节点中较大的数的索引if(child+1<length && array[child]<array[child+1]){child++;}//如果父节点值大于子节点则不用交换值if(temp>=array[child]){break;}//交换父节点和子节点的值array[parent]=array[child];parent=child;child=2*child+1;}array[parent]=temp;}

3.使用优先队列代替堆,优先队列的实现原理与大根堆/小根堆相同。效率不如手写堆。(也许是调用库函数会加载其他东西)

public int[] getLeastNumbers(int[] arr, int k) {if ( k==0 || arr.length==0){return new int[0];}PriorityQueue<Integer> queue = new PriorityQueue<>((o1, o2) -> o2-o1);//优先队列默认为升序排列,重写compare方法为降序排列。使用lombda表示,等价于以下代码
//        PriorityQueue<Integer> queue = new PriorityQueue<>(new Comparator<Integer>() {
//            @Override
//            public int compare(Integer o1, Integer o2) {
//                return o2-o1;
//            }
//        });for (int i : arr) {if (queue.size()<k){queue.offer(i);}else if (queue.peek()>i){ //当优先队列满k个后,取最大值和待放入的值比较,如果待放入值小,则放入。queue.poll();queue.offer(i);}}int[] ints = new int[queue.size()];for (int i = 0; i < ints.length; i++) {ints[i]=queue.poll();}return ints;}

4.快速排序思想,但是不对数组完全排序,只需要有选择性的分段排序,当确定基准等于K时,则K左边的数都比k小。右边的数不需要处理。

    public int[] getLeastNumbers(int[] arr, int k) {if (k == 0 || arr.length == 0) {return new int[0];}//k-1为我们要找的基准的下标。return quickSort(arr, 0, arr.length - 1, k - 1);}public int[] quickSort(int[] arr, int left, int right, int k) {// 对数组进行分割,取出下次分割的基准标号int division = division(arr, left, right);//如果基准与k正好相等,则返回k左边的部分。if (division == k) {return Arrays.copyOf(arr, k + 1);}// 如果k在基准的右边,则对右段进行递归排序。// 如果k在基准的坐边,则对左段进行递归排序。return division < k ? quickSort(arr, division + 1, right, k) : quickSort(arr, left, division - 1, k);}public int division(int[] list, int left, int right) {// 以最左边的数(left)为基准int base = list[left];while (left < right) {// 从序列右端开始,向左遍历,直到找到小于base的数while (left < right && list[right] >= base) {right--;}// 找到了比base小的元素,将这个元素放到最左边的位置list[left] = list[right];// 从序列左端开始,向右遍历,直到找到大于base的数while (left < right && list[left] <= base) {left++;}// 找到了比base大的元素,将这个元素放到最右边的位置list[right] = list[left];}// 最后将base放到left位置。都比此时,left位置的左侧数值应该left小;// 而left位置的右侧数值应该都比left大。list[left] = base;return left;}

5.题目中规定数字不大于一万,可以使用频次数字处理,然后遍历频次数组,获取前K个数。

public int[] getLeastNumbers(int[] arr, int k) {if (k == 0 || arr.length == 0) {return new int[0];}// 统计每个数字出现的次数int[] hash = new int[10001];for (int num : arr) {hash[num]++;}int[] ans = new int[k];int count=0;for (int num = 0; num < hash.length; num++) {if (count == k) {break;}//从频次数组中取出前k个数。while (hash[num]>0 && k>count){ans[count++]=num;hash[num]--;}}return ans;
}

这篇关于[LeetCode]40.最小的k个数(TopK问题。通过维护堆、优先队列、快排思想等解决方法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826948

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Window Server2016加入AD域的方法步骤

《WindowServer2016加入AD域的方法步骤》:本文主要介绍WindowServer2016加入AD域的方法步骤,包括配置DNS、检测ping通、更改计算机域、输入账号密码、重启服务... 目录一、 准备条件二、配置ServerB加入ServerA的AD域(test.ly)三、查看加入AD域后的变

Window Server2016 AD域的创建的方法步骤

《WindowServer2016AD域的创建的方法步骤》本文主要介绍了WindowServer2016AD域的创建的方法步骤,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、准备条件二、在ServerA服务器中常见AD域管理器:三、创建AD域,域地址为“test.ly”

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写