实地研究降本增效的杀伤力,LSTM算法实现全国失业率分析预测

本文主要是介绍实地研究降本增效的杀伤力,LSTM算法实现全国失业率分析预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

降本增效=降本增笑?增不增效暂且不清楚,但是这段时间大厂的产品频繁出现服务器宕机和产品BUG确实是十分增笑。目前来看降本增效这一理念还会不断渗透到各行各业,不单单只是互联网这块了,那么对于目前就业最为严峻的一段时期,我们能够对失业率有个全面的了解是最好的情况,所以基于此理念我们来拟定一个失业率预测分析这一微项目。

我们将会从数据获取–数据处理–LSTM建模–预测检测这四个流程依次进行最终得到一个较为合理准确的数据,当然该预测率的准确度是依赖获取到的官方数据的,至于数据真实性这个不作过多解释~大家只要了解建模过程如何和LSTM模型如何使用就好。

博主现任高级人工智能工程师,理解各类模型原理以及每种模型的建模流程和各类题目分析方法。写文章的目的就是为了让零基础快速使用各类代码模型,保证每篇文章都为用心撰写。

且每篇文章我都会尽可能将简化涉及到垂直领域的专业知识,转化为大众小白可以读懂易于理解的知识,将繁杂的程序创建步骤逐个拆解,以逐步递进的方式由难转易逐渐掌握并实践,欢迎各位学习者关注博主,博主将不断创作技术实用前沿文章。

数据获取

不查不知道,一查确实还是挺有意思的数据,想要获取官方数据可以直接访问国家数据网站。
全国失业率统计数据因为是官方的数据所以就默认为真实情况,就不用进行数据清洗工程了。

数据预览

# 转换为DataFrame
df = pd.DataFrame(data)# 将日期转换为时间序列,并设为索引
df['日期'] = pd.to_datetime(df['日期'], format='%Y年%m月')
df.set_index('日期', inplace=True)# 由于数据是逆序的,我们需要将其反转以正确地展示时间序列
df = df.iloc[::-1]df

请在此添加图片描述

我们再来数据可视化帮我们更具体的看清楚整个数据的全貌:

# 绘制线图
plt.figure(figsize=(10, 6))  # 设置图形大小
plt.plot(df.index, df['全国城镇调查失业率(%)'], marker='o', label='全国城镇调查失业率(%)')
plt.plot(df.index, df['全国城镇本地户籍劳动力失业率(%)'], marker='s', label='全国城镇本地户籍劳动力失业率(%)')
plt.plot(df.index, df['全国城镇外来户籍劳动力失业率(%)'], marker='^', label='全国城镇外来户籍劳动力失业率(%)')# 设置图表标题和标签
plt.title('不同类型失业率的时间序列变化')
plt.xlabel('日期')
plt.ylabel('失业率(%)')
plt.xticks(rotation=45)  # 旋转x轴标签以避免重叠
plt.legend()  # 显示图例# 显示图表
plt.tight_layout()  # 自动调整子图参数, 使之填充整个图像区域
plt.show()

请在此添加图片描述

LSTM建模

请在此添加图片描述

那么现在我们可以来预测未来三个月的失业率到底如何,构建一个LSTM模型来预测未来三个月的失业率是一个典型的时间序列预测任务。使用PyTorch框架进行此类预测需要几个步骤:数据预处理、定义LSTM模型、训练模型、以及最后的预测。下面我会概述这个过程的每个步骤,并提供相应的示例代码。

步骤 1: 数据预处理

时间序列预测的第一步通常涉及到数据的预处理,包括标准化/归一化数据和创建适合于监督学习的时间序列数据集。

from sklearn.preprocessing import MinMaxScaler
import numpy as np
import torch# 假设df是包含失业率时间序列的DataFrame# 选择一个列作为预测目标
data = df['全国城镇调查失业率(%)'].values.reshape(-1, 1)# 数据标准化
scaler = MinMaxScaler(feature_range=(-1, 1))
data_normalized = scaler.fit_transform(data)# 创建数据集
def create_dataset(data, look_back=1):dataX, dataY = [], []for i in range(len(data)-look_back):a = data[i:(i+look_back), 0]dataX.append(a)dataY.append(data[i + look_back, 0])return np.array(dataX), np.array(dataY)look_back = 3  # 使用3个月的数据来预测下一个月
X, y = create_dataset(data_normalized, look_back)
X = X.reshape(X.shape[0], 1, X.shape[1])  # 为了LSTM输入,需要转换为[samples, time steps, features]# 转换为PyTorch张量
X_torch = torch.from_numpy(X).float()
y_torch = torch.from_numpy(y).float()

步骤 2: 定义LSTM模型

在PyTorch中定义一个简单的LSTM模型。

import torch.nn as nnclass LSTMModel(nn.Module):def __init__(self, input_size=1, hidden_layer_size=100, output_size=1):super().__init__()self.hidden_layer_size = hidden_layer_sizeself.lstm = nn.LSTM(input_size, hidden_layer_size)self.linear = nn.Linear(hidden_layer_size, output_size)self.hidden_cell = (torch.zeros(1,1,self.hidden_layer_size),torch.zeros(1,1,self.hidden_layer_size))def forward(self, input_seq):lstm_out, self.hidden_cell = self.lstm(input_seq.view(len(input_seq) ,1, -1), self.hidden_cell)predictions = self.linear(lstm_out.view(len(input_seq), -1))return predictions[-1]

步骤 3: 训练模型

接下来,定义训练循环来训练LSTM模型。

model = LSTMModel(input_size=3, hidden_layer_size=100, output_size=1)  # 确保这里的参数与你的数据匹配
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)epochs = 150
for epoch in range(epochs):total_loss = 0for seq, labels in zip(X_torch, y_torch):optimizer.zero_grad()# 根据修改后的模型,不再需要外部初始化hidden_celly_pred = model(seq.unsqueeze(0))  # 增加一个批次维度single_loss = loss_function(y_pred, labels.unsqueeze(0))  # 标签也需要增加一个批次维度single_loss.backward()optimizer.step()total_loss += single_loss.item()if epoch % 25 == 0:print(f'epoch: {epoch:3} loss: {total_loss/len(X_torch):10.8f}')

训练误差:

epoch:   0 loss: 0.50735911
epoch:  25 loss: 0.09428047
epoch:  50 loss: 0.08110558
epoch:  75 loss: 0.06782570
epoch: 100 loss: 0.05745859
epoch: 125 loss: 0.05270799

模型预测

基于前面讨论的步骤和代码,使用训练好的LSTM模型和最近几个月的数据来预测未来三个月的失业率。这个过程大致分为以下几步:

  1. 使用最近的数据:基于look_back参数,从最新的数据开始预测。
  2. 进行预测:利用模型预测下一个时间点的值。
  3. 更新输入数据:将预测值添加到输入数据中,用于下一步的预测。
  4. 重复预测过程:重复步骤2和3,直到预测了所需的未来时间点的数据。
# 如果look_back=3,我们取最后3个已知时间点的数据
input_data_normalized = data_normalized[-look_back:].reshape((1, 1, look_back))# 转换为PyTorch张量
input_data_tensor = torch.from_numpy(input_data_normalized).float()# 存储预测结果
predictions_normalized = []# 进行未来三个月的预测
for _ in range(3):  # 预测未来三个月with torch.no_grad():  # 不计算梯度# 预测下一个时间点pred = model(input_data_tensor)predictions_normalized.append(pred.numpy().flatten()[0])  # 存储预测结果# 更新输入数据input_data_tensor = torch.cat((input_data_tensor[:, :, 1:], pred.unsqueeze(0)), dim=2)# 将预测结果逆标准化
predictions = scaler.inverse_transform(np.array(predictions_normalized).reshape(-1, 1))print("预测的未来三个月失业率:", predictions.flatten())
预测的未来三个月失业率: [5.226562  5.1846743 5.1323695]

这个过程假定input_data_normalized包含了用于开始预测的最后look_back个时间点的数据,已经是标准化形式。每次预测后,我们都会更新这个输入数据,将最新的预测值添加进去,同时移除最旧的数据点,以便于下一次预测。预测完成后,我们使用与训练数据相同的MinMaxScaler实例scaler来逆标准化预测结果,以获取原始尺度上的预测值。

确保在进行预测之前,model已经在相似的数据上训练并且达到了满意的性能。预测的这个值大家看个乐呵就行不要太较真~

点关注,防走丢,如有纰漏之处,请留言指教,非常感谢

以上就是本期全部内容。我是fanstuck ,有问题大家随时留言讨论 ,我们下期见。

这篇关于实地研究降本增效的杀伤力,LSTM算法实现全国失业率分析预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826595

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

C#实现获得某个枚举的所有名称

《C#实现获得某个枚举的所有名称》这篇文章主要为大家详细介绍了C#如何实现获得某个枚举的所有名称,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... C#中获得某个枚举的所有名称using System;using System.Collections.Generic;usi

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

C# 读写ini文件操作实现

《C#读写ini文件操作实现》本文主要介绍了C#读写ini文件操作实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、INI文件结构二、读取INI文件中的数据在C#应用程序中,常将INI文件作为配置文件,用于存储应用程序的

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如