实地研究降本增效的杀伤力,LSTM算法实现全国失业率分析预测

本文主要是介绍实地研究降本增效的杀伤力,LSTM算法实现全国失业率分析预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

降本增效=降本增笑?增不增效暂且不清楚,但是这段时间大厂的产品频繁出现服务器宕机和产品BUG确实是十分增笑。目前来看降本增效这一理念还会不断渗透到各行各业,不单单只是互联网这块了,那么对于目前就业最为严峻的一段时期,我们能够对失业率有个全面的了解是最好的情况,所以基于此理念我们来拟定一个失业率预测分析这一微项目。

我们将会从数据获取–数据处理–LSTM建模–预测检测这四个流程依次进行最终得到一个较为合理准确的数据,当然该预测率的准确度是依赖获取到的官方数据的,至于数据真实性这个不作过多解释~大家只要了解建模过程如何和LSTM模型如何使用就好。

博主现任高级人工智能工程师,理解各类模型原理以及每种模型的建模流程和各类题目分析方法。写文章的目的就是为了让零基础快速使用各类代码模型,保证每篇文章都为用心撰写。

且每篇文章我都会尽可能将简化涉及到垂直领域的专业知识,转化为大众小白可以读懂易于理解的知识,将繁杂的程序创建步骤逐个拆解,以逐步递进的方式由难转易逐渐掌握并实践,欢迎各位学习者关注博主,博主将不断创作技术实用前沿文章。

数据获取

不查不知道,一查确实还是挺有意思的数据,想要获取官方数据可以直接访问国家数据网站。
全国失业率统计数据因为是官方的数据所以就默认为真实情况,就不用进行数据清洗工程了。

数据预览

# 转换为DataFrame
df = pd.DataFrame(data)# 将日期转换为时间序列,并设为索引
df['日期'] = pd.to_datetime(df['日期'], format='%Y年%m月')
df.set_index('日期', inplace=True)# 由于数据是逆序的,我们需要将其反转以正确地展示时间序列
df = df.iloc[::-1]df

请在此添加图片描述

我们再来数据可视化帮我们更具体的看清楚整个数据的全貌:

# 绘制线图
plt.figure(figsize=(10, 6))  # 设置图形大小
plt.plot(df.index, df['全国城镇调查失业率(%)'], marker='o', label='全国城镇调查失业率(%)')
plt.plot(df.index, df['全国城镇本地户籍劳动力失业率(%)'], marker='s', label='全国城镇本地户籍劳动力失业率(%)')
plt.plot(df.index, df['全国城镇外来户籍劳动力失业率(%)'], marker='^', label='全国城镇外来户籍劳动力失业率(%)')# 设置图表标题和标签
plt.title('不同类型失业率的时间序列变化')
plt.xlabel('日期')
plt.ylabel('失业率(%)')
plt.xticks(rotation=45)  # 旋转x轴标签以避免重叠
plt.legend()  # 显示图例# 显示图表
plt.tight_layout()  # 自动调整子图参数, 使之填充整个图像区域
plt.show()

请在此添加图片描述

LSTM建模

请在此添加图片描述

那么现在我们可以来预测未来三个月的失业率到底如何,构建一个LSTM模型来预测未来三个月的失业率是一个典型的时间序列预测任务。使用PyTorch框架进行此类预测需要几个步骤:数据预处理、定义LSTM模型、训练模型、以及最后的预测。下面我会概述这个过程的每个步骤,并提供相应的示例代码。

步骤 1: 数据预处理

时间序列预测的第一步通常涉及到数据的预处理,包括标准化/归一化数据和创建适合于监督学习的时间序列数据集。

from sklearn.preprocessing import MinMaxScaler
import numpy as np
import torch# 假设df是包含失业率时间序列的DataFrame# 选择一个列作为预测目标
data = df['全国城镇调查失业率(%)'].values.reshape(-1, 1)# 数据标准化
scaler = MinMaxScaler(feature_range=(-1, 1))
data_normalized = scaler.fit_transform(data)# 创建数据集
def create_dataset(data, look_back=1):dataX, dataY = [], []for i in range(len(data)-look_back):a = data[i:(i+look_back), 0]dataX.append(a)dataY.append(data[i + look_back, 0])return np.array(dataX), np.array(dataY)look_back = 3  # 使用3个月的数据来预测下一个月
X, y = create_dataset(data_normalized, look_back)
X = X.reshape(X.shape[0], 1, X.shape[1])  # 为了LSTM输入,需要转换为[samples, time steps, features]# 转换为PyTorch张量
X_torch = torch.from_numpy(X).float()
y_torch = torch.from_numpy(y).float()

步骤 2: 定义LSTM模型

在PyTorch中定义一个简单的LSTM模型。

import torch.nn as nnclass LSTMModel(nn.Module):def __init__(self, input_size=1, hidden_layer_size=100, output_size=1):super().__init__()self.hidden_layer_size = hidden_layer_sizeself.lstm = nn.LSTM(input_size, hidden_layer_size)self.linear = nn.Linear(hidden_layer_size, output_size)self.hidden_cell = (torch.zeros(1,1,self.hidden_layer_size),torch.zeros(1,1,self.hidden_layer_size))def forward(self, input_seq):lstm_out, self.hidden_cell = self.lstm(input_seq.view(len(input_seq) ,1, -1), self.hidden_cell)predictions = self.linear(lstm_out.view(len(input_seq), -1))return predictions[-1]

步骤 3: 训练模型

接下来,定义训练循环来训练LSTM模型。

model = LSTMModel(input_size=3, hidden_layer_size=100, output_size=1)  # 确保这里的参数与你的数据匹配
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)epochs = 150
for epoch in range(epochs):total_loss = 0for seq, labels in zip(X_torch, y_torch):optimizer.zero_grad()# 根据修改后的模型,不再需要外部初始化hidden_celly_pred = model(seq.unsqueeze(0))  # 增加一个批次维度single_loss = loss_function(y_pred, labels.unsqueeze(0))  # 标签也需要增加一个批次维度single_loss.backward()optimizer.step()total_loss += single_loss.item()if epoch % 25 == 0:print(f'epoch: {epoch:3} loss: {total_loss/len(X_torch):10.8f}')

训练误差:

epoch:   0 loss: 0.50735911
epoch:  25 loss: 0.09428047
epoch:  50 loss: 0.08110558
epoch:  75 loss: 0.06782570
epoch: 100 loss: 0.05745859
epoch: 125 loss: 0.05270799

模型预测

基于前面讨论的步骤和代码,使用训练好的LSTM模型和最近几个月的数据来预测未来三个月的失业率。这个过程大致分为以下几步:

  1. 使用最近的数据:基于look_back参数,从最新的数据开始预测。
  2. 进行预测:利用模型预测下一个时间点的值。
  3. 更新输入数据:将预测值添加到输入数据中,用于下一步的预测。
  4. 重复预测过程:重复步骤2和3,直到预测了所需的未来时间点的数据。
# 如果look_back=3,我们取最后3个已知时间点的数据
input_data_normalized = data_normalized[-look_back:].reshape((1, 1, look_back))# 转换为PyTorch张量
input_data_tensor = torch.from_numpy(input_data_normalized).float()# 存储预测结果
predictions_normalized = []# 进行未来三个月的预测
for _ in range(3):  # 预测未来三个月with torch.no_grad():  # 不计算梯度# 预测下一个时间点pred = model(input_data_tensor)predictions_normalized.append(pred.numpy().flatten()[0])  # 存储预测结果# 更新输入数据input_data_tensor = torch.cat((input_data_tensor[:, :, 1:], pred.unsqueeze(0)), dim=2)# 将预测结果逆标准化
predictions = scaler.inverse_transform(np.array(predictions_normalized).reshape(-1, 1))print("预测的未来三个月失业率:", predictions.flatten())
预测的未来三个月失业率: [5.226562  5.1846743 5.1323695]

这个过程假定input_data_normalized包含了用于开始预测的最后look_back个时间点的数据,已经是标准化形式。每次预测后,我们都会更新这个输入数据,将最新的预测值添加进去,同时移除最旧的数据点,以便于下一次预测。预测完成后,我们使用与训练数据相同的MinMaxScaler实例scaler来逆标准化预测结果,以获取原始尺度上的预测值。

确保在进行预测之前,model已经在相似的数据上训练并且达到了满意的性能。预测的这个值大家看个乐呵就行不要太较真~

点关注,防走丢,如有纰漏之处,请留言指教,非常感谢

以上就是本期全部内容。我是fanstuck ,有问题大家随时留言讨论 ,我们下期见。

这篇关于实地研究降本增效的杀伤力,LSTM算法实现全国失业率分析预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826595

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组