聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化

2024-03-19 08:36

本文主要是介绍聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化

目录

    • 聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

基本介绍

NNMF+DBO+K-Medoids聚类,蜣螂优化算法DBO优化K-Medoids
非负矩阵分解(NNMF)、蜣螂优化算法(DBO)、以及K-Medoids聚类。下面我将分别解释这些概念,然后讨论如何将它们结合起来使用。

非负矩阵分解(NNMF):
非负矩阵分解是一种线性代数技术,用于将一个非负矩阵分解为两个非负矩阵的乘积。这种方法在数据分析和机器学习中很有用,因为它可以揭示数据的潜在结构,同时保持数据的非负性。
蜣螂优化算法(DBO):
蜣螂优化算法是一种模拟自然界中蜣螂觅食行为的优化算法。它通常用于解决优化问题,如函数优化、参数调整等。通过模拟蜣螂的滚动行为和路径选择,该算法能够在复杂空间中寻找最优解。
K-Medoids聚类:
K-Medoids聚类是一种基于原型的聚类方法,它选择数据集中的实际观测值作为聚类中心(即medoids)。与K-Means聚类不同,K-Medoids使用数据集中的实际点作为聚类中心,而不是计算得到的平均值。这使得K-Medoids对噪声和异常值更加鲁棒。
结合使用:
将NNMF、DBO和K-Medoids聚类结合起来使用可能涉及以下步骤:

数据预处理:首先,你可以使用NNMF对原始数据进行预处理,以提取数据的潜在结构或特征。这有助于降低数据的维度并减少噪声。
参数优化:然后,你可以使用DBO算法来优化K-Medoids聚类的参数,如聚类数量K和medoids的选择。通过模拟蜣螂的觅食行为,DBO可以帮助你找到这些参数的最优值。
聚类分析:最后,使用优化后的参数,你可以应用K-Medoids聚类算法对数据进行聚类分析。这将根据数据的内在结构和特征将数据划分为不同的组或类别。
需要注意的是,这种组合方法的具体实现细节可能因应用场景和数据特性的不同而有所变化。你可能需要根据你的具体需求和数据特点来调整和优化这个流程。此外,还需要注意算法的计算复杂度和性能,以确保在实际应用中能够高效地处理大规模数据集。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现基于nnmf+DBO+K-Medoids的数据聚类可视化
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

这篇关于聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/825403

相关文章

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

基于SpringBoot实现文件秒传功能

《基于SpringBoot实现文件秒传功能》在开发Web应用时,文件上传是一个常见需求,然而,当用户需要上传大文件或相同文件多次时,会造成带宽浪费和服务器存储冗余,此时可以使用文件秒传技术通过识别重复... 目录前言文件秒传原理代码实现1. 创建项目基础结构2. 创建上传存储代码3. 创建Result类4.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很