聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化

2024-03-19 08:36

本文主要是介绍聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化

目录

    • 聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

基本介绍

NNMF+DBO+K-Medoids聚类,蜣螂优化算法DBO优化K-Medoids
非负矩阵分解(NNMF)、蜣螂优化算法(DBO)、以及K-Medoids聚类。下面我将分别解释这些概念,然后讨论如何将它们结合起来使用。

非负矩阵分解(NNMF):
非负矩阵分解是一种线性代数技术,用于将一个非负矩阵分解为两个非负矩阵的乘积。这种方法在数据分析和机器学习中很有用,因为它可以揭示数据的潜在结构,同时保持数据的非负性。
蜣螂优化算法(DBO):
蜣螂优化算法是一种模拟自然界中蜣螂觅食行为的优化算法。它通常用于解决优化问题,如函数优化、参数调整等。通过模拟蜣螂的滚动行为和路径选择,该算法能够在复杂空间中寻找最优解。
K-Medoids聚类:
K-Medoids聚类是一种基于原型的聚类方法,它选择数据集中的实际观测值作为聚类中心(即medoids)。与K-Means聚类不同,K-Medoids使用数据集中的实际点作为聚类中心,而不是计算得到的平均值。这使得K-Medoids对噪声和异常值更加鲁棒。
结合使用:
将NNMF、DBO和K-Medoids聚类结合起来使用可能涉及以下步骤:

数据预处理:首先,你可以使用NNMF对原始数据进行预处理,以提取数据的潜在结构或特征。这有助于降低数据的维度并减少噪声。
参数优化:然后,你可以使用DBO算法来优化K-Medoids聚类的参数,如聚类数量K和medoids的选择。通过模拟蜣螂的觅食行为,DBO可以帮助你找到这些参数的最优值。
聚类分析:最后,使用优化后的参数,你可以应用K-Medoids聚类算法对数据进行聚类分析。这将根据数据的内在结构和特征将数据划分为不同的组或类别。
需要注意的是,这种组合方法的具体实现细节可能因应用场景和数据特性的不同而有所变化。你可能需要根据你的具体需求和数据特点来调整和优化这个流程。此外,还需要注意算法的计算复杂度和性能,以确保在实际应用中能够高效地处理大规模数据集。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现基于nnmf+DBO+K-Medoids的数据聚类可视化
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

这篇关于聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/825403

相关文章

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

java实现docker镜像上传到harbor仓库的方式

《java实现docker镜像上传到harbor仓库的方式》:本文主要介绍java实现docker镜像上传到harbor仓库的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 前 言2. 编写工具类2.1 引入依赖包2.2 使用当前服务器的docker环境推送镜像2.2

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java easyExcel实现导入多sheet的Excel

《JavaeasyExcel实现导入多sheet的Excel》这篇文章主要为大家详细介绍了如何使用JavaeasyExcel实现导入多sheet的Excel,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录1.官网2.Excel样式3.代码1.官网easyExcel官网2.Excel样式3.代码

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机