代码随想录算法训练营第二十四天|● 理论基础 ● 77. 组合(JS写法)

本文主要是介绍代码随想录算法训练营第二十四天|● 理论基础 ● 77. 组合(JS写法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回溯理论基础

在这里插入图片描述
回溯法解决的问题都可以抽象为树形结构,因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度。递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

回溯三部曲

1、回溯函数模板返回值以及参数
在回溯算法中,我的习惯是函数起名字为backtracking,这个起名大家随意。回溯算法中函数返回值一般为void。
再来看一下参数,因为回溯算法需要的参数可不像二叉树递归的时候那么容易一次性确定下来,所以一般是先写逻辑,然后需要什么参数,就填什么参数。但后面的回溯题目的讲解中,为了方便大家理解,我在一开始就帮大家把参数确定下来。
回溯函数伪代码如下:

void backtracking(参数)

2、回溯函数终止条件
既然是树形结构,那么我们在讲解二叉树的递归 (opens new window)的时候,就知道遍历树形结构一定要有终止条件。所以回溯也有要终止条件。什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。所以回溯函数终止条件伪代码如下:

if (终止条件) {存放结果;return;
}

3、回溯搜索的遍历过程
在上面我们提到了,回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。
如图:
在这里插入图片描述

回溯算法模板

void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}

77 组合

题目链接/文章讲解:https://programmercarl.com/0077.%E7%BB%84%E5%90%88.html
视频讲解:https://www.bilibili.com/video/BV1ti4y1L7cv
剪枝操作:https://www.bilibili.com/video/BV1wi4y157er
在这里插入图片描述

思路:将回溯问题理解成树,重点理解每次还要pop出来

理论上这道题如果k=2可以用两层for循环嵌套,但是如果k=50就要嵌套50层for循环,因此这时候就需要用到回溯了。(k不确定,可能很大也可能很小)
在这里插入图片描述

/*** @param {number} n* @param {number} k* @return {number[][]}*/
var combine = function(n, k) {let result = [];let path = [];//确定回溯的参数const backTracking = (n,k,start) => {//终止条件if(path.length === k){//[...path]result.push(path.slice());return;}//单层循环for(let i = start;i<=n;i++){path.push(i);backTracking(n,k,i+1);path.pop();}}backTracking(n,k,1);return result;};

使用 result.push(path.slice()) 而不是 result.push(path) 的主要原因是,JavaScript 中的数组是引用类型,如果直接使用 result.push(path),会将 path 的引用放入 result 数组中。
由于 backtracking 过程中 path 数组不断变化(不断添加和移除元素),如果直接将 path 引用放入 result 数组中,由于 backtracking 过程中 path 数组会不断更改,最终 result 数组中的所有元素都会指向相同的 path 引用,导致 result 数组中的元素都是一样的,而不是不同的组合。
因此,为了确保在 result 数组中存储不同的组合,需要使用 path.slice() 来创建 path 的副本,将副本推入 result 数组中。这样每个组合都是不同的,不会相互影响。
所以,采用 result.push(path.slice()) 会确保在 result 数组中存储不同的组合,而不是相同的引用。

剪枝

在这里插入图片描述
图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。

所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。

如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了。

注意代码中i,就是for循环里选择的起始位置。

1、已经选择的元素个数:path.size();

2、还需要的元素个数为: k - path.size();

3、在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历

为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。

举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。

从2开始搜索都是合理的,可以是组合[2, 3, 4]。

因此,剪枝操作仅需要将i的范围更改即可。

/*** @param {number} n* @param {number} k* @return {number[][]}*/
var combine = function(n, k) {let result = [];let path = [];const backTracking = (n,k,start) => {if(path.length === k){//[...path]result.push(path.slice());return;}for(let i = start;i <= n - (k - path.length) + 1;i++){path.push(i);backTracking(n,k,i+1);path.pop();}}backTracking(n,k,1);return result;};

这篇关于代码随想录算法训练营第二十四天|● 理论基础 ● 77. 组合(JS写法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/823278

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调