【CSP】2021-09-3 脉冲神经网络 使用滚动数组代替map优化时间+常数级优化

本文主要是介绍【CSP】2021-09-3 脉冲神经网络 使用滚动数组代替map优化时间+常数级优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2021-09-3 脉冲神经网络 使用滚动数组代替map优化时间+常数级优化

首先说这题非常的恶心,算是一个垃圾题目,竟然卡的不是算法而是一些常数级优化,同样的算法可以拿到66分,而且同样的算法可以在acwing上过,但是csp的官方oj却有时候过有时候不过,很恶心,要是考试遇到了这种题目是不可能拿到100分的。

思路

这题的思路基本上所有人都能想到,和之前的第三题一样要建立索引。

首先我们解决这个题目一定是要遍历每个时刻,然后更新每个脉冲源和神经元的,然后可能会发出脉冲到突触(边)上,但是突触上脉冲的传播有时延,是在D个时间后,接收端才能接收到脉冲,所以这时候我们就要为每个神经元建立一个索引 用时间索引接受到脉冲的和(I[i][j] 表示i号神经元在j时刻接受到脉冲强度的总和),这样我们如果有脉冲到,可以直接加在对应的神经元的时间上,取的时候也可以直接取。

遇到的问题

  1. 使用double 做map的索引有问题

一开始没发现,用浮点数做索引会出现精度问题,就是同样是6.2 存储的时候有可能是6.19999999和6.20000001这样的然后判断索引的时候就取不到6.2索引对应的数据。后面改成int就好了

  1. 常数级优化

这题如果你是按照上边的思路写的,那么不出意外会只能拿到66分

在这里插入图片描述

会超时,因为题目时间限制是1s并且时间复杂度是 1 0 8 10^8 108所以我们需要一些常数级的优化(很恶心没见过卡这个的)。

  1. 将map换成二维数组

就是

struct neuron
{unordered_map<int, double> I;double v, u, a, b, c, d;int t;           // 表示neuron所处的时间
} nes[2001];         // 神经元

将里面的I提出出来

改成

double I[1005][1005];

这样就好了,并且由于时间是 1 0 5 10^5 105而神经元也有 1 0 3 10^3 103个这样就会导致超出空间限制

不知道为啥csp的oj报这个错误

在这里插入图片描述

然后使用滚动数组就好了

之后多提交几次就可以拿到时而83时而66的分数

在这里插入图片描述

  1. 其他的常数级优化

不使用万能头

// #include <bits/stdc++.h>
#include <iostream>
#include <cstring>
#include <vector>

使用 inline优化函数

inline int myrand(void)
{next1 = next1 * 1103515245 + 12345;return ((unsigned)(next1 / 65536) % 32768);
}

使用scanf printf 优化输入输出

    scanf("%d %d %d %d", &N, &S, &P, &T);scanf("%lf", &dt);printf("%.3f %.3f\n", min_v, max_v);printf("%d %d", min_times, max_times);

使用register优化循环

    for (register int i = 0; i < S; i++){struct link temp;int s;// cin >> s >> temp.t >> temp.w >> temp.D;scanf("%d %d %lf %d", &s, &temp.t, &temp.w, &temp.D);m[s].push_back(temp);mod = max(mod, temp.D + 1);// m[s][temp.t] = temp;}

然后就可以时而100分时而83分,但是acwing可以稳定拿到100分

在这里插入图片描述

完整代码

// #include <bits/stdc++.h>
#include <iostream>
#include <cstring>
#include <vector>using namespace std;
static unsigned long next1 = 1;
int N, S, P, T;
double dt;
struct neuron
{// unordered_map<int, double> I;// double I[2010];double v, u, a, b, c, d;int t;           // 表示neuron所处的时间
} nes[2001];         // 神经元
int out_times[2001]; // 发生脉冲的次数
int mod = 0;
double I[1005][1005];
struct link
{double w;int D;int t = -1;
};// 突触 注意第一个索引有可能大于等于N
// 如果大于等于N则为脉冲源
// unordered_map<int, vector<struct link>> m;
vector<struct link> m[2001];double r[2001]; // 脉冲源
/* RAND_MAX assumed to be 32767 */
inline int myrand(void)
{next1 = next1 * 1103515245 + 12345;return ((unsigned)(next1 / 65536) % 32768);
}signed main()
{// ios::sync_with_stdio(false);// cin.tie(0);// cout.tie(0);// cin >> N >> S >> P >> T;// cin >> dt;scanf("%d %d %d %d", &N, &S, &P, &T);scanf("%lf", &dt);int sum = 0;while (sum < N){int rn;double v, u, a, b, c, d;// cin >> rn >> v >> u >> a >> b >> c >> d;scanf("%d %lf %lf %lf %lf %lf %lf", &rn, &v, &u, &a, &b, &c, &d);for (register int i = 0; i < rn; i++){nes[sum + i].a = a, nes[sum + i].b = b, nes[sum + i].c = c, nes[sum + i].d = d;nes[sum + i].v = v, nes[sum + i].u = u;}sum += rn;}for (register int i = 0; i < P; i++){// cin >> r[i];scanf("%lf", &r[i]);}for (register int i = 0; i < S; i++){struct link temp;int s;// cin >> s >> temp.t >> temp.w >> temp.D;scanf("%d %d %lf %d", &s, &temp.t, &temp.w, &temp.D);m[s].push_back(temp);mod = max(mod, temp.D + 1);// m[s][temp.t] = temp;}int t = 0;while (t < T){t++;int t_tmp = t % mod;for (register int i = 0; i < P; i++) // 遍历脉冲源{// vector<struct link> temp = m[i + N];int rand = myrand();if (rand < r[i]){// for (int j = 0; j < N; j++)// {//     struct link item = m[i + N][j];//     if (item.t != -1)//         nes[item.t].I[t + item.D] += item.w;// }for (int j = 0; j < m[i + N].size(); j++){struct link item = m[i + N][j];I[(t_tmp + item.D) % mod][item.t] += item.w;// nes[item.t].I[t + item.D] += item.w;}}}for (register int i = 0; i < N; i++) //{nes[i].t = t;double v = nes[i].v, u = nes[i].u;nes[i].v = v + dt * (0.04 * v * v + 5 * v + 140 - u) + I[t_tmp][i];// nes[i].v = v + dt * (0.04 * v * v + 5 * v + 140 - u) + nes[i].I[t];// nes[i].I.erase(t);nes[i].u = u + dt * nes[i].a * (nes[i].b * v - u);if (nes[i].v >= 30){out_times[i]++;nes[i].v = nes[i].c;nes[i].u += nes[i].d;for (int j = 0; j < m[i].size(); j++){struct link item = m[i][j];I[(t_tmp + item.D) % mod][item.t] += item.w;// nes[item.t].I[t + item.D] += item.w;}}}memset(I[t_tmp], 0, sizeof I[t_tmp]);}double max_v = -1 * 1e8, min_v = 1e8;int max_times = -1, min_times = 1e5;for (register int i = 0; i < N; i++){max_v = max(nes[i].v, max_v);min_v = min(nes[i].v, min_v);max_times = max(out_times[i], max_times);min_times = min(out_times[i], min_times);}// cout << fixed << setprecision(3) << min_v << ' ' << max_v << endl;// cout << min_times << ' ' << max_times;printf("%.3f %.3f\n", min_v, max_v);printf("%d %d", min_times, max_times);return 0;
}

这篇关于【CSP】2021-09-3 脉冲神经网络 使用滚动数组代替map优化时间+常数级优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/822246

相关文章

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA

Python使用Matplotlib和Seaborn绘制常用图表的技巧

《Python使用Matplotlib和Seaborn绘制常用图表的技巧》Python作为数据科学领域的明星语言,拥有强大且丰富的可视化库,其中最著名的莫过于Matplotlib和Seaborn,本篇... 目录1. 引言:数据可视化的力量2. 前置知识与环境准备2.1. 必备知识2.2. 安装所需库2.3

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Linux内核定时器使用及说明

《Linux内核定时器使用及说明》文章详细介绍了Linux内核定时器的特性、核心数据结构、时间相关转换函数以及操作API,通过示例展示了如何编写和使用定时器,包括按键消抖的应用... 目录1.linux内核定时器特征2.Linux内核定时器核心数据结构3.Linux内核时间相关转换函数4.Linux内核定时

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M