Python——利用差分方程求解解偏微分方程的边值问题

2024-03-18 08:30

本文主要是介绍Python——利用差分方程求解解偏微分方程的边值问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、问题

用差分方程求解下列边值问题,并编写程序:

此类边值问题较为容易,我们利用差商的方法就可以求解,程序如下。 


 

 2、程序

选定A=B=μ=1;R=10;h=0.01;N=1000;其中h为步长。
#python
import numpy as np
import matplotlib.pyplot as plt
bg=[1001,-1000];co=[];a=0;n=1000;bh=[10];bn=[]
for j in range(999):bg.append(a)
co.append(bg)
for t in range(1001):bn.append(0)
for m in range(1000):bh.append(-(n-1)*0.000001)n=n-1
n=1000
for p in range(999):for i in range(1001):if p == i:bn[i]=1;bn[i+1]=-(2-1/(n-1)+1/((n-1)**2));bn[i+2]=1-1/(n-1)co.append(bn);bn=[]for t in range(1001):bn.append(0)n=n-1
bn=[]
for t in range(1000):bn.append(0)
bn.append(1)
co.append(bn)
A = np.array(co)
b = np.array(bh)
y = np.linalg.solve(A, b)
x=[]
for bi in range(1001):x.append(bi*0.01)
y=list(y)
y.reverse()
plt.plot(x,y,c='k',label='Value')
plt.xlabel('X');plt.ylabel('Y');plt.title('Difference Equation Solver')
plt.legend()
plt.show()

 

3、结果 


 

4、实验总结

(1)此类问题属于差分方程中的第二类边界条件,即边界条件有微分方程的形式出现。我们对此类微分方程的求解,主要是将其离散化,即利用一阶差分和二阶差分。

(2)算法实现的主要思想为,利用边值条件化为一阶差分,推出我们要的Ni-1项,然后将要求解的微分方程同样进行差分形式表示,即二阶差分。然后将边界条件算出的Ni=f(Ni-1),代入二阶差分,求出Ni-1=h(Ni-2)。根据这样的思想不断迭代,最后的结果就是求解一个线性方程组。我们可以使用高斯消元和赛德尔迭代法进行求解这个方程组。结果以图形可视化展示。

(3)差分法的思想和做法是,把定解区域剖分为网格,在网格结点上以差商代替微商或用某种插值方式,把微分方程化为包含有限个未知数的差分方程组。差分法直观、简易、能普遍用于各种类型的微分方程和任意形状的区域。因为它包含巨大的运算量,所以只在电子计算机问世之后,才得到广泛的应用和发展。

从微分方程出发的差分化 网格剖分的一种最简单又常用的做法是取平行于坐标轴的直线作为网格线,例如取=,=,、为步长,、取一切整数,这时网格结点为(,)。对方程(1)进行差分化、以表示差分近似解、表示在网格结点(,)上的分量。如果(,)是内结点,即邻近四个网格结点都在上,则用中心二阶差商代替二阶微商代入(1),即得相应的差分方程

这篇关于Python——利用差分方程求解解偏微分方程的边值问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/821765

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v