数据仓库核心:揭秘事实表与维度表的角色与区别

2024-03-17 22:52

本文主要是介绍数据仓库核心:揭秘事实表与维度表的角色与区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


文章目录

    • 1. 引言
    • 2. 基本概念
      • 2.1 事实表(Fact Table)
      • 2.2 维度表(Dimension Table)
    • 3. 两者关系
    • 4. 为什么要有做区分
    • 5. 写在最后

1. 引言

前篇我们深入探讨了Hive数据仓库中的表类型,包括内部表、外部表、分区表、桶表、视图以及临时表。每种表类型都有其独特的特性和适用场景,它们共同构成了Hive强大的数据管理能力。这里主要是从数据存储位置、数据管理方式、以及查询优化的角度来划分的。今天我们将从从数据仓库设计的角度来认识一下事实表(Fact Table)和维度表(Dimension Table)。

2. 基本概念

2.1 事实表(Fact Table)

事实表,顾名思义,是用来存储事实的表,这些事实通常是指可以量化的业务指标,如销售额、订单数量等。事实表的特点是有大量的行,每行代表一个业务事件的度量。

换句话说就是你要关注事物的内容,事实表就像故事中的主角,它包含我们感兴趣的主要信息(如销售金额、订购数量、利润以及它们发生的时间和地点等)。事实表中的每一行数据都代表了某种业务活动,就好比故事中的一个关键事件一样。

比如,一张记录了公司所有业务交易的清单。每一条记录都是一个事实,比如一次销售或一笔支出。

举个例子,假设我们有一个简单的销售事实表,它记录了每次销售的金额和日期:

CREATE TABLE Sales_Fact (SaleID INT PRIMARY KEY,ProductID INT,SaleAmount DECIMAL(10,2),SaleDate DATE
);

在这个例子中,SaleID 是每条销售记录的唯一标识,ProductID 与维度表相关联,SaleAmount 是销售金额,SaleDate 是销售日期。

2.2 维度表(Dimension Table)

维度表则是用来描述事实的表,它提供了分析数据的上下文。维度表通常包含描述性的信息,如产品名称、客户信息、时间等。

维度表就是你观察该事物的角度, 维度表就像故事中的背景,它包含了描述事实表中数据的上下文信息,比如时间、地点、产品、顾客等等,这些信息帮助我们理解事实表中的数据。维度表通常描述了事实表中数据的各种属性,比如产品的类别,客户的地理位置等。

维度表就像是事实表的说明书。它们帮助我们理解事实表中的数字背后的故事。例如,我们可能会有一个产品维度表,它包含了产品的详细信息:

CREATE TABLE Product_Dimension (ProductID INT PRIMARY KEY,ProductName VARCHAR(255),Category VARCHAR(100),SupplierID INT
);

在这个产品维度表中,ProductID 是产品的唯一标识,它与事实表中的 ProductID 相匹配,ProductNameCategory 提供了产品的描述性信息,SupplierID 可能与另一个维度表相关联。

3. 两者关系

事实表与维度表的相互关系 事实表和维度表通过外键关联,这种关系使得我们可以将量化的业务指标(事实)与描述性的属性(维度)结合起来,进行多角度的数据分析。

例如,我们可以通过产品维度表来分析不同类别产品的销售情况。以下是一个简单的SQL查询,展示了如何使用维度表来分析事实表中的数据:

SELECTp.Category,SUM(s.SaleAmount) AS TotalSales
FROMSales_Fact s
JOINProduct_Dimension p ON s.ProductID = p.ProductID
GROUP BYp.Category;

这个查询会返回每个产品类别的总销售额。

实际案例分析 假设我们经营一家电子商务公司,我们需要分析不同时间段内的销售趋势。我们可以使用时间维度表来实现这一点:

CREATE TABLE Time_Dimension (TimeID INT PRIMARY KEY,Year INT,Month INT,Quarter VARCHAR(10),Date DATE
);

通过将销售事实表与时间维度表关联,我们可以轻松地按年、月或季度对销售数据进行分组和分析。

4. 为什么要有做区分

事实表和维度表的设计模式提供了一种简化和规范化数据模型的方法。数据仓库使用事实表和维度表的设计模式就像是用来组织数据的两种特殊工具,因为它们让我们以更方便的方式存储和理解数据。

事实表就像一个存储数值数据的清单,存储了与业务过程相关的数值度量(如销售金额、订购数量、利润以及它们发生的时间和地点等)。维度表则是用来提供对这些数值的解释和上下文信息的词典,存储了与事实表相关的描述性属性(如时间、地点、产品等)。

如果你要做某种分析,就好比你在研究一份报告。事实表中记录了具体的数据,就如同报告的具体内容,而维度表就像是提供了对这份报告的解释和支撑的背景知识。这种结构就像是为报告提供了上下文信息,让我们更容易地理解报告中的内容。

  1. 数据组织:事实表是数据仓库中存储业务度量数据的地方,比如销售额和订单数量。维度表则存储描述性信息,如产品名称和客户信息。这就像是你的衣柜,事实表是衣柜里的衣物,而维度表是衣物的标签,告诉你每件衣物是什么、属于哪个季节。这种分离使得数据结构更加清晰,便于管理和维护。
  2. 查询性能:将事实表和维度表分开,可以提高数据查询的速度和效率。事实表通常包含大量的数字数据,适合进行聚合和计算操作;而维度表包含文本数据,适合用于查询和报告。这种结构可以减少数据冗余,提高查询效率。事实表就像是你的日记本,记录了每天发生的具体事件和数字,比如“今天卖了5件衣服”。而维度表就像是日记本旁边的标签,告诉你这些事件发生的时间、地点和涉及的人物。
  3. 易于分析:事实表和维度表的结构使得数据分析师和业务用户能够更容易地进行多维度的数据分析。维度表提供了不同的分析角度,如时间、地理位置、产品分类等,而事实表提供了具体的度量数据。这种结构支持了复杂的查询,如钻取、切片和旋转等操作。就好比烹饪食谱中的食材清单(事实表)和步骤说明(维度表),食材告诉你需要什么,步骤告诉你如何操作。
  4. 数据一致性:维度表的设计有助于保持数据的一致性。当需要更新信息时,只需在一个地方修改,而不需要在多个事实表中重复更改。这就像是家庭账本,记录了每一笔收支的具体数字,而账本的分类告诉你钱都花在了哪些方面。
  5. 支持数据仓库的扩展性:随着业务的发展,可能需要添加新的度量或维度。事实表和维度表的分离使得数据仓库更容易扩展。新的维度可以独立于事实表添加,而新的度量可以添加到现有的事实表中,而不会相互影响。这就像是装修房子时的预算清单和设计图纸,清单记录了具体的花费,而图纸描述了装修的风格和材料选择。
  6. 数据的可读性和可理解性:维度表中的描述性数据使得非技术用户也能更容易地理解数据。这就像是图书馆的图书分类标签,告诉你每本书属于哪个领域,方便你找到想要的书。
  7. 数据的可维护性:当数据需要更新或维护时,分开的事实表和维度表使得这些操作更加简单。这就像是旅行规划,事实表记录了拍摄的照片数量,而维度表告诉你这些照片是在哪个城市、哪个景点拍摄的。

总之,区分事实表和维度表是为了提高数据仓库的效率、性能、可维护性和可用性,同时支持更加灵活和深入的数据分析。这种分离是维度建模的核心,是构建高效、可扩展和易于理解的数据仓库的关键。

5. 写在最后

在本篇博文中,我们深入探讨了数据仓库中事实表和维度表的关键角色与它们之间的显著差异。事实表,作为数据仓库的心脏,承载着量化的业务度量,而维度表则为这些度量提供了必要的上下文和解释。这种精心设计的结构不仅使我们能够高效地存储和检索数据,而且还能更加灵活和深入地进行数据分析,为企业的决策提供强有力的支持。最终,理解事实表和维度表的真正价值在于它们如何共同作用,帮助我们从数据中提取出有意义的洞察,推动业务的持续增长和创新。结论性地说,事实表和维度表是数据仓库中不可或缺的两个组成部分,它们的结合使我们能够进行深入的数据分析,从而支持更明智的业务决策。对于大数据开发工程师或数据分析师而言,理解它们的定义、结构和关系至关重要。


本博文及其内容仅代表作者个人观点和理解,意在提供一般性的信息和知识分享。虽然作者力求确保信息的准确性和可靠性,但由于技术和知识的不断进步,以及作者个人能力和经验的局限性,博文中的信息可能不完全准确或可能已经过时。本博文并不旨在替代专业的建议或实际经验,而是为了促进学习和讨论。我们鼓励读者提出宝贵的建议、纠正或补充,以帮助我们改进和完善内容。对于任何可能的不准确之处,我们在此表示歉意,并感谢您的理解与宽容。


这篇关于数据仓库核心:揭秘事实表与维度表的角色与区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/820429

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

揭秘世界上那些同时横跨两大洲的国家

我们在《世界人口过亿的一级行政区分布》盘点全球是那些人口过亿的一级行政区。 现在我们介绍五个横跨两州的国家,并整理七大洲和这些国家的KML矢量数据分析分享给大家,如果你需要这些数据,请在文末查看领取方式。 世界上横跨两大洲的国家 地球被分为七个大洲分别是亚洲、欧洲、北美洲、南美洲、非洲、大洋洲和南极洲。 七大洲示意图 其中,南极洲是无人居住的大陆,而其他六个大洲则孕育了众多国家和

三国地理揭秘:为何北伐之路如此艰难,为何诸葛亮无法攻克陇右小城?

俗话说:天时不如地利,不是随便说说,诸葛亮六出祁山,连关中陇右的几座小城都攻不下来,行军山高路险,无法携带和建造攻城器械,是最难的,所以在汉中,无论从哪一方进攻,防守方都是一夫当关,万夫莫开;再加上千里运粮,根本不需要打,司马懿只需要坚守城池拼消耗就能不战而屈人之兵。 另一边,洛阳的虎牢关,一旦突破,洛阳就无险可守,这样的进军路线,才是顺势而为的用兵之道。 读历史的时候我们常常看到某一方势

无线领夹麦克风什么牌子好用?揭秘领夹麦克风哪个牌子音质好!

随着短视频行业的星期,围绕着直播和视频拍摄的电子数码类产品也迎来了热销不减的高增长,其中除了数码相机外,最为重要的麦克风也得到了日益增长的高需求,尤其是无线领夹麦克风,近几年可谓是异常火爆。别看小小的一对无线麦克风,它对于视频拍摄的音质起到了极为关键的作用。 不过目前市面上的麦克风品牌种类多到让人眼花缭乱,盲目挑选的话容易踩雷,那么无线领夹麦克风什么牌子好用?今天就给大家推荐几款音质好的

负债不再是障碍?银行信贷“白名单“揭秘

谈及银行信贷产品,常闻有言称存在无需考量负债与查询记录之奇品,此等说法十有八九为中介诱人上钩之辞。轻信之下,恐将步入连环陷阱。除非个人资质出类拔萃,如就职于国央企或事业单位,工龄逾年,五险一金完备,还款能力卓越,或能偶遇线下产品对查询记录稍显宽容,然亦非全然无视。宣称全然不顾者,纯属无稽之谈。 银行非慈善机构,不轻易于困境中援手,更偏爱锦上添花之举。若无坚实资质,即便求助于银行亦难获青睐。反

native和static native区别

本文基于Hello JNI  如有疑惑,请看之前几篇文章。 native 与 static native java中 public native String helloJni();public native static String helloJniStatic();1212 JNI中 JNIEXPORT jstring JNICALL Java_com_test_g

Android fill_parent、match_parent、wrap_content三者的作用及区别

这三个属性都是用来适应视图的水平或者垂直大小,以视图的内容或尺寸为基础的布局,比精确的指定视图的范围更加方便。 1、fill_parent 设置一个视图的布局为fill_parent将强制性的使视图扩展至它父元素的大小 2、match_parent 和fill_parent一样,从字面上的意思match_parent更贴切一些,于是从2.2开始,两个属性都可以使用,但2.3版本以后的建议使

Collection List Set Map的区别和联系

Collection List Set Map的区别和联系 这些都代表了Java中的集合,这里主要从其元素是否有序,是否可重复来进行区别记忆,以便恰当地使用,当然还存在同步方面的差异,见上一篇相关文章。 有序否 允许元素重复否 Collection 否 是 List 是 是 Set AbstractSet 否

javascript中break与continue的区别

在javascript中,break是结束整个循环,break下面的语句不再执行了 for(let i=1;i<=5;i++){if(i===3){break}document.write(i) } 上面的代码中,当i=1时,执行打印输出语句,当i=2时,执行打印输出语句,当i=3时,遇到break了,整个循环就结束了。 执行结果是12 continue语句是停止当前循环,返回从头开始。