如何通俗理解 beta分布、汤普森采样和狄利克雷分布

2024-03-17 15:08

本文主要是介绍如何通俗理解 beta分布、汤普森采样和狄利克雷分布,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如果想理解汤普森采样算法,就必须先熟悉了解贝塔分布。 

一次伯努利实验(比如扔硬币,二元变量)叫做伯努利分布(Bernoulli distribution)。多次伯努利实验叫做二项式分布(Binomial distribution,还是二元变量),加个先验就是beta分布。

二项式分布变成多元就成了多项式分布(multinomial distribution),beta分布搞到多元就是Dirichlet分布。

Dirichlet分布是Beta分布的多元推广。Beta分布是二项式分布的共轭分布,Dirichlet分布是多项式分布的共轭分布。通常情况下,我们说的分布都是关于某个参数的函数,把对应的参数换成一个函数(函数也可以理解成某分布的概率密度)就变成了关于函数的函数。于是,把Dirichlet分布里面的参数换成一个基分布就变成了一个关于分布的分布了。那么它就是Dirichlet过程了。可以参考如下资料:

Dirichlet Distribution(狄利克雷分布)与Dirichlet Process(狄利克雷过程) | 学习数据 | 数据学习者官方网站

一、Beta(贝塔)分布

Beta分布是一个定义在[0,1]区间上的连续概率分布族,它有两个正值参数,称为形状参数,一般用α和β表示,Beta分布的概率密度函数形式如下:

这里的Γ表示gamma函数。

Beta分布的均值是:

                             

方差:

                

Beta分布的图形(概率密度函数):

从Beta分布的概率密度函数的图形我们可以看出,Beta分布有很多种形状,但都是在0-1区间内,因此Beta分布可以描述各种0-1区间内的形状(事件)。因此,它特别适合为某件事发生或者成功的概率建模。同时,当α=1,β=1的时候,它就是一个均匀分布。

贝塔分布主要有 α和 β两个参数,这两个参数决定了分布的形状,从上图及其均值和方差的公式可以看出:

1)α/(α+β)也就是均值,其越大,概率密度分布的中心位置越靠近1,依据此概率分布产生的随机数也多说都靠近1,反之则都靠近0。

2)α+β越大,则分布越窄,也就是集中度越高,这样产生的随机数更接近中心位置,从方差公式上也能看出来。

二、举例理解Beta分布

贝塔分布可以看作是一个概率的分布,当我们不知道一个东西的具体概率是多少时,它给出了所有概率出现的可能性大小,可以理解为概率的概率分布。

以棒球为例子:

  棒球运动的一个指标就是棒球击球率,就是用一个运动员击中的球数除以总的击球数,一般认为0.27是一个平均的击球水平,如果击球率达到0.3就会认为非常优秀了。如果我们要预测一个棒球运动员,他整个赛季的棒球击球率,怎么做呢?你可以直接计算他目前的棒球击球率,用击中数除以击球数。但是,这在赛季开始阶段时是很不合理的。假如这个运动员就打了一次,还中了,那么他的击球率就是100%;如果没中,那么就是0%,甚至打5、6次的时候,也可能运气爆棚全中击球率100%,或者运气很糟击球率0%,所以这样计算出来的击球率是不合理也是不准确的。

      为什么呢?

    当运动员首次击球没中时,没人认为他整个赛季都会一次不中,所以击球率不可能为0。因为我们有先验期望,根据历史信息,我们知道击球率一般会在0.215到0.36之间。如果一个运动员一开始打了几次没中,那么我们知道他可能最终成绩会比平均稍微差一点,但是一般不可能会偏离上述区间,更不可能为0。

  如何解决呢?

    一个最好的方法来表示这些先验期望(统计中称为先验(prior))就是贝塔分布,表示在运动员打球之前,我们就对他的击球率有了一个大概范围的预测。假设我们预计运动员整个赛季的击球率平均值大概是0.27左右,范围大概是在0.21到0.35之间。那么用贝塔分布来表示,我们可以取参数 α=81,β=219,因为α/(α+β)=0.27,图形分布也主要集中在0.21~0.35之间,非常符合经验值,也就是我们在不知道这个运动员真正击球水平的情况下,我们先给一个平均的击球率的分布。

假设运动员一次击中,那么现在他本赛季的记录是“1次打中;1次打击”。那么我们更新我们的概率分布,让概率曲线做一些移动来反应我们的新信息。

         Beta(α0+hits,β0+misses)   

注:α0,β0是初始化参数,也就是本例中的81,219。hits表示击中的次数,misses表示未击中的次数。

击中一次,则新的贝塔分布为Beta(81+1,219),一次并不能反映太大问题,所以在图形上变化也不大,不画示意图了。然而,随着整个赛季运动员逐渐进行比赛,这个曲线也会逐渐移动以匹配最新的数据。由于我们拥有了更多的数据,因此曲线(击球率范围)会逐渐变窄。假设赛季过半时,运动员一共打了300次,其中击中100次。那么新的贝塔分布是Beta(81+100,219+200),如下图:

可以看出,曲线更窄而且往右移动了(击球率更高),由此我们对于运动员的击球率有了更好的了解。新的贝塔分布的期望值为0.303,比直接计算100/(100+200)=0.333要低,是比赛季开始时的预计0.27要高,所以贝塔分布能够抛出掉一些偶然因素,比直接计算击球率更能客观反映球员的击球水平。

总结:

这个公式就相当于给运动员的击中次数添加了“初始值”,相当于在赛季开始前,运动员已经有81次击中219次不中的记录。 因此,在我们事先不知道概率是什么但又有一些合理的猜测时,贝塔分布能够很好地表示为一个概率的分布。

 三、汤普森采样

 汤普森采样的背后原理正是上述所讲的Beta分布,你把贝塔分布的 a 参数看成是推荐后用户点击的次数,把分布的 b 参数看成是推荐后用户未点击的次数,则汤普森采样过程如下:

  1、取出每一个候选对应的参数 a 和 b;
  2、为每个候选用 a 和 b 作为参数,用贝塔分布产生一个随机数;
  3、按照随机数排序,输出最大值对应的候选;
  4、观察用户反馈,如果用户点击则将对应候选的 a 加 1,否则 b 加 1;

注:实际上在推荐系统中,要为每一个用户都保存一套参数,比如候选有 m 个,用户有 n 个,那么就要保存 2 m n个参数。

汤普森采样为什么有效呢?

1)如果一个候选被选中的次数很多,也就是 a+b 很大了,它的分布会很窄,换句话说这个候选的收益已经非常确定了,就是说不管分布中心接近0还是1都几乎比较确定了。用它产生随机数,基本上就在中心位置附近,接近平均收益。

2)如果一个候选不但 a+b 很大,即分布很窄,而且 a/(a+b) 也很大,接近 1,那就确定这是个好的候选项,平均收益很好,每次选择很占优势,就进入利用阶段。反之则有可能平均分布比较接近与0,几乎再无出头之日

3)如果一个候选的 a+b 很小,分布很宽,也就是没有被选择太多次,说明这个候选是好是坏还不太确定,那么分布就是跳跃的,这次可能好,下次就可能坏,也就是还有机会存在,没有完全抛弃。那么用它产生随机数就有可能得到一个较大的随机数,在排序时被优先输出,这就起到了前面说的探索作用。

python代码实现:

choice = numpy.argmax(pymc.rbeta(1 + self.wins, 1 + self.trials - self.wins))

这篇关于如何通俗理解 beta分布、汤普森采样和狄利克雷分布的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819300

相关文章

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

【C++高阶】C++类型转换全攻略:深入理解并高效应用

📝个人主页🌹:Eternity._ ⏩收录专栏⏪:C++ “ 登神长阶 ” 🤡往期回顾🤡:C++ 智能指针 🌹🌹期待您的关注 🌹🌹 ❀C++的类型转换 📒1. C语言中的类型转换📚2. C++强制类型转换⛰️static_cast🌞reinterpret_cast⭐const_cast🍁dynamic_cast 📜3. C++强制类型转换的原因📝

Codeforces Beta Round #47 C凸包 (最终写法)

题意慢慢看。 typedef long long LL ;int cmp(double x){if(fabs(x) < 1e-8) return 0 ;return x > 0 ? 1 : -1 ;}struct point{double x , y ;point(){}point(double _x , double _y):x(_x) , y(_y){}point op

深入理解RxJava:响应式编程的现代方式

在当今的软件开发世界中,异步编程和事件驱动的架构变得越来越重要。RxJava,作为响应式编程(Reactive Programming)的一个流行库,为Java和Android开发者提供了一种强大的方式来处理异步任务和事件流。本文将深入探讨RxJava的核心概念、优势以及如何在实际项目中应用它。 文章目录 💯 什么是RxJava?💯 响应式编程的优势💯 RxJava的核心概念