本文主要是介绍平面内有n个点,如何快速求出距离最近的点对?【分治法】【屈婉玲教材】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目如标题,很容易想到劈成两半,每一半各求最近的,最后merge
难点在f(n)如何估计,假设两个子问题的点集分别是left和right,两部分的最近距离分别是d1和d2,所以有可能的最小距离δ=min(d1,d2)。如果left中的每一个点都要和right中的每一个点求距离,那么f(n)=n^2,分治算法是不会简化的。幸运的是如果left中的每一个点最多只需要和right中的最多6个点比较【使用下图中的鸽巢原理证明】
所以还有T(n)=O(nlog(n)),代码如下:
import random
import math
import sysdef random_point():x,y = random.uniform(0,1000),random.uniform(0,1000)return (x,y)def distance(a,b):return math.sqrt((a[0]-b[0])**2+(a[1]-b[1])**2)def brute_force(points):res,a,b = sys.maxsize,None,Nonel = len(points)for i in range(1,l):for j in range(i):dis = distance(points[i],points[j])if (dis < res):res,a,b = dis,points[i],points[j]return res,a,bdef divide_algo(points):def divide(points):l = len(points)if (l <= 1):return sys.maxsize,None,Noneelif (l == 2):return distance(points[0],points[1]),points[0],points[1]mid = l >> 1d1,a1,b1 = divide(points[:mid])d2,a2,b2 = divide(points[mid:])d,a,b = (d1,a1,b1) if d1<d2 else (d2,a2,b2)line = points[mid][0]left,right = [],[]for x,y in points:if (line-d<=x<line):left.append((x,y))elif (line<=x<=line+d): #bug1: line<=x的情况应该划分给右边right.append((x,y))sorted_right = sorted(right, key=lambda pts: (pts[1],pts[0]))right_len = len(sorted_right)for lpx,lpy in left:target,ll,rr = lpy-d,0,right_len-1while (ll <= rr):mm = ll + ((rr-ll)>>1)if (sorted_right[mm][1] >= target):rr = mm - 1else:ll = mm + 1##sorted_right[ll] is the first y >= lpy-dfor i in range(7):if ll+i >= right_len:breakdis = distance((lpx,lpy),sorted_right[ll+i])if (dis<d):d,a,b = dis,(lpx,lpy),sorted_right[ll+i]return d,a,bpoints.sort()return divide(points)if __name__ == '__main__':points = [random_point() for _ in range(600)]#points = [(863.3684416788369, 625.7796544031397), (245.20062985148627, 620.1477779298687), (242.46118979625464, 177.28076233614954)]print(points)print('brute_force={}'.format(brute_force(points)))print('divide_algo={}'.format(divide_algo(points)))
最后致敬已经在天堂的屈老师
这篇关于平面内有n个点,如何快速求出距离最近的点对?【分治法】【屈婉玲教材】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!