YOLOv9改进策略:注意力机制 | SKAttention注意力效果优于SENet

本文主要是介绍YOLOv9改进策略:注意力机制 | SKAttention注意力效果优于SENet,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        💡💡💡本文改进内容:SKAttention输入自适应地调整其感受野大小的能力

yolov9-c-SKAttention summary: 987 layers, 73109830 parameters, 73109798 gradients, 256.5 GFLOPs

 改进结构图如下:

YOLOv9魔术师专栏

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

✨✨✨ 新开专栏暂定免费限时开放,后续每月调价一次✨✨✨

🚀🚀🚀 本项目持续更新 | 更新完结保底≥50+ ,冲刺100+🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

YOLOv9魔改:注意力机制、检测头、blcok魔改、自研原创等

 YOLOv9魔术师

💡💡💡全网独家首发创新(原创),适合paper !!!

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

 1.YOLOv9原理介绍

论文: 2402.13616.pdf (arxiv.org)

代码:GitHub - WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information摘要: 如今的深度学习方法重点关注如何设计最合适的目标函数,从而使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。然而,现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。因此,YOLOv9 深入研究了数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。作者提出了可编程梯度信息(programmable gradient information,PGI)的概念,来应对深度网络实现多个目标所需要的各种变化。PGI 可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。此外,研究者基于梯度路径规划设计了一种新的轻量级网络架构,即通用高效层聚合网络(Generalized Efficient Layer Aggregation Network,GELAN)。该架构证实了 PGI 可以在轻量级模型上取得优异的结果。研究者在基于 MS COCO 数据集的目标检测任务上验证所提出的 GELAN 和 PGI。结果表明,与其他 SOTA 方法相比,GELAN 仅使用传统卷积算子即可实现更好的参数利用率。对于 PGI 而言,它的适用性很强,可用于从轻型到大型的各种模型。我们可以用它来获取完整的信息,从而使从头开始训练的模型能够比使用大型数据集预训练的 SOTA 模型获得更好的结果。对比结果如图1所示。

 YOLOv9框架图

1.1 YOLOv9框架介绍

YOLOv9各个模型介绍

2.  SKAttention

论文:https://arxiv.org/pdf/1903.06586.pdf

多个 SK 块的堆叠得到 SKNet,这个名字也是为了致敬 SENet。

SKNet 在 ImageNet、CIFAR 数据集上都取得了 SOTA。

详细的实验分析表明,SKNet 中的神经元可以捕获具有不同比例的目标对象,实验验证了神经元根据输入自适应地调整其感受野大小的能力。

本文的方法分为三个部分:Split,Fuse,Select。Split就是一个multi-branch的操作,用不同的卷积核进行卷积得到不同的特征;Fuse部分就是用SE的结构获取通道注意力的矩阵(N个卷积核就可以得到N个注意力矩阵,这步操作对所有的特征参数共享),这样就可以得到不同kernel经过SE之后的特征;Select操作就是将这几个特征进行相加。

  

  

3.SKAttention加入到YOLOv9

3.1新建py文件,路径为models/attention/attention.py


###################### SKAttention   ####     start   by  AI&CV  ###############################from torch.nn import init
from collections import OrderedDictclass SKAttention(nn.Module):def __init__(self, c1,channel=512, kernels=[1, 3, 5, 7], reduction=16, group=1, L=32):super().__init__()self.d = max(L, channel // reduction)self.convs = nn.ModuleList([])for k in kernels:self.convs.append(nn.Sequential(OrderedDict([('conv', nn.Conv2d(channel, channel, kernel_size=k, padding=k // 2, groups=group)),('bn', nn.BatchNorm2d(channel)),('relu', nn.ReLU())])))self.fc = nn.Linear(channel, self.d)self.fcs = nn.ModuleList([])for i in range(len(kernels)):self.fcs.append(nn.Linear(self.d, channel))self.softmax = nn.Softmax(dim=0)def forward(self, x):bs, c, _, _ = x.size()conv_outs = []### splitfor conv in self.convs:conv_outs.append(conv(x))feats = torch.stack(conv_outs, 0)  # k,bs,channel,h,w### fuseU = sum(conv_outs)  # bs,c,h,w### reduction channelS = U.mean(-1).mean(-1)  # bs,cZ = self.fc(S)  # bs,d### calculate attention weightweights = []for fc in self.fcs:weight = fc(Z)weights.append(weight.view(bs, c, 1, 1))  # bs,channelattention_weughts = torch.stack(weights, 0)  # k,bs,channel,1,1attention_weughts = self.softmax(attention_weughts)  # k,bs,channel,1,1### fuseV = (attention_weughts * feats).sum(0)return V###################### SKAttention  ####     end   by  AI&CV  ###############################

3.2修改yolo.py

1)首先进行引用

from models.attention.attention import *

2)修改def parse_model(d, ch):  # model_dict, input_channels(3)

在源码基础上加入SKAttention

        elif m is nn.BatchNorm2d:args = [ch[f]]###attention #####elif m in {EMA_attention, CoordAtt,CBAM,GAM_Attention,PolarizedSelfAttention,SimAM,NAMAttention,DoubleAttention,SKAttention}:c2 = ch[f]args = [c2, *args]###attention #####

3.3 yolov9-c-SKAttention.yaml

# YOLOv9# parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()# anchors
anchors: 3# YOLOv9 backbone
backbone:[[-1, 1, Silence, []],  # conv down[-1, 1, Conv, [64, 3, 2]],  # 1-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 2-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3# avg-conv down[-1, 1, ADown, [256]],  # 4-P3/8# elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5# avg-conv down[-1, 1, ADown, [512]],  # 6-P4/16# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7# avg-conv down[-1, 1, ADown, [512]],  # 8-P5/32# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9[-1, 1, SKAttention, [512]],  # 10]# YOLOv9 head
head:[# elan-spp block[-1, 1, SPPELAN, [512, 256]],  # 11# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 7], 1, Concat, [1]],  # cat backbone P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 14# up-concat merge[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 5], 1, Concat, [1]],  # cat backbone P3# elan-2 block[-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 17 (P3/8-small)# avg-conv-down merge[-1, 1, ADown, [256]],[[-1, 14], 1, Concat, [1]],  # cat head P4# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 20 (P4/16-medium)# avg-conv-down merge[-1, 1, ADown, [512]],[[-1, 11], 1, Concat, [1]],  # cat head P5# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 23 (P5/32-large)# multi-level reversible auxiliary branch# routing[5, 1, CBLinear, [[256]]], # 24[7, 1, CBLinear, [[256, 512]]], # 25[9, 1, CBLinear, [[256, 512, 512]]], # 26# conv down[0, 1, Conv, [64, 3, 2]],  # 27-P1/2# conv down[-1, 1, Conv, [128, 3, 2]],  # 28-P2/4# elan-1 block[-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 29# avg-conv down fuse[-1, 1, ADown, [256]],  # 30-P3/8[[24, 25, 26, -1], 1, CBFuse, [[0, 0, 0]]], # 31  # elan-2 block[-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 32# avg-conv down fuse[-1, 1, ADown, [512]],  # 33-P4/16[[25, 26, -1], 1, CBFuse, [[1, 1]]], # 34 # elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 35# avg-conv down fuse[-1, 1, ADown, [512]],  # 36-P5/32[[26, -1], 1, CBFuse, [[2]]], # 37# elan-2 block[-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 38# detection head# detect[[32, 35, 38, 17, 20, 23], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)]

这篇关于YOLOv9改进策略:注意力机制 | SKAttention注意力效果优于SENet的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819089

相关文章

(超详细)YOLOV7改进-Soft-NMS(支持多种IoU变种选择)

1.在until/general.py文件最后加上下面代码 2.在general.py里面找到这代码,修改这两个地方 3.之后直接运行即可

YOLOv8改进 | SPPF | 具有多尺度带孔卷积层的ASPP【CVPR2018】

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转 Atrous Spatial Pyramid Pooling (ASPP) 是一种在深度学习框架中用于语义分割的网络结构,它旨

以canvas方式绘制粒子背景效果,感觉还可以

这个是看到项目中别人写好的,感觉这种写法效果还可以,就存留记录下 就是这种的背景效果。如果想改背景颜色可以通过canvas.js文件中的fillStyle值改。 附上demo下载地址。 https://download.csdn.net/download/u012138137/11249872

echarts省份标注加散点效果

这个是安徽的效果图,鼠标移到红色标注或者对应的市区位置都会显示对应的数值。 先直接上代码: import anhuiMapJson from './anhui.json'getCoords: function(city) {var res = [];if (city != null) {for (var c in this.cityMap.features) {if (this.cityMa

Linux系统稳定性的奥秘:探究其背后的机制与哲学

在计算机操作系统的世界里,Linux以其卓越的稳定性和可靠性著称,成为服务器、嵌入式系统乃至个人电脑用户的首选。那么,是什么造就了Linux如此之高的稳定性呢?本文将深入解析Linux系统稳定性的几个关键因素,揭示其背后的技术哲学与实践。 1. 开源协作的力量Linux是一个开源项目,意味着任何人都可以查看、修改和贡献其源代码。这种开放性吸引了全球成千上万的开发者参与到内核的维护与优化中,形成了

Spring中事务的传播机制

一、前言 首先事务传播机制解决了什么问题 Spring 事务传播机制是包含多个事务的方法在相互调用时,事务是如何在这些方法间传播的。 事务的传播级别有 7 个,支持当前事务的:REQUIRED、SUPPORTS、MANDATORY; 不支持当前事务的:REQUIRES_NEW、NOT_SUPPORTED、NEVER,以及嵌套事务 NESTED,其中 REQUIRED 是默认的事务传播级别。

服务器雪崩的应对策略之----SQL优化

SQL语句的优化是数据库性能优化的重要方面,特别是在处理大规模数据或高频访问时。作为一个C++程序员,理解SQL优化不仅有助于编写高效的数据库操作代码,还能增强对系统性能瓶颈的整体把握。以下是详细的SQL语句优化技巧和策略: SQL优化 1. 选择合适的数据类型2. 使用索引3. 优化查询4. 范式化和反范式化5. 查询重写6. 使用缓存7. 优化数据库设计8. 分析和监控9. 调整配置1、

设置Nginx缓存策略

详细信息 Nginx服务器的缓存策略设置方法有两种:add_header或者expires。 1. add_header 1)语法:add_header name value。 2)默认值:none。 3)使用范围:http、server、location。 配置示例如下: add_header cache-control "max-age=86400";#设置缓存时间为1天。add

XMG 抽屉效果

1.比如说我创建了3个View -(void)viewDidLoad{  [ super viewDidLoad]; [self setUpChild] ;         UIPanGestureRecognizer *pan=[UIPanGestureRecognizer alloc]initWithTarget:self action:@selector(pan:)];

多头注意力机制(Multi-Head Attention)

文章目录 多头注意力机制的作用多头注意力机制的工作原理为什么使用多头注意力机制?代码示例 多头注意力机制(Multi-Head Attention)是Transformer架构中的一个核心组件。它在机器翻译、自然语言处理(NLP)等领域取得了显著的成功。多头注意力机制的引入是为了增强模型的能力,使其能够从不同的角度关注输入序列的不同部分,从而捕捉更多层次的信息。 多头注意力机