使用端到端深度学习模型完成PPI任务两篇论文笔记

2024-03-16 20:58

本文主要是介绍使用端到端深度学习模型完成PPI任务两篇论文笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.“Multifaceted protein–protein interaction prediction based on Siamese residual RCNN”

1.1PPI任务的难点:

(1)蛋白质的表征需要一个模型来有效地过滤和聚合它们的局部特征,同时保留重要的上下文和序列的氨基酸信息
(2)扩展深度神经结构经常导致低效的学习过程,并遭受臭名昭著的消失梯度问题
(iii)还需要一个有效的机制来理解蛋白质对在PPI预测中的相互影响。此外,框架必须具有大数据的可伸缩性(我们的任务要求用在多长的数据上?)可推广到不同的预测任务。

1.2 作者对于自己工作的概括

(1)训练端到端网络PIPR,从而减少了用户数据预处理的工作量。
PIPR requires only the primary protein sequences as the input, and is trained to automatically preserve the critical features from the sequences.
补充:
在这里插入图片描述

(2)强调了在PPI任务中考虑上下文化和顺序信息的需求。(也就是说序列信息和局部信息都很重要,可是现在我们思考的模型中还没有加入局部信息)
(3)Third, the architecture of PIPR can be flexibly used to address different PPI tasks
(4)这个工作中也预测了亲和度!且表现很良好,可以对细微变化做出反应。

1.3PPI任务相较于NLP任务的不同之处

(1)序列
In contrast to sentences, proteins are profiled in sequences with more intractable patterns, as well as in a drastically larger range of lengths.
(2)Precisely capturing the PPI requires much more comprehensive learning architectures to distill the latent information from the entire sequences, and to preserve the long-term ordering information.

1.4 处理PPI任务上,基于深度学习的方法的发展:

(1)第一项工作是基于深层CNN
One recent work (Hashemifar et al., 2018), DPPI, uses a deep CNN-based architecture which focuses on capturing local features from protein profiles. DPPI represents the first work to deploy deep learning to PPI prediction, and has achieved the state-of-the-art performance on the binary prediction task. However, it requires excessive efforts for data pre-processing such as constructing protein profiles by PSI-BLAST (Altschul et al., 1997), and does not incorp-
orate a neural learning architecture that captures the important contextualized and sequential features.

(2)DNN-PPI (Li et al., 2018) represents another relevant work of this line, which deploys a different learning structure with two separated CNN encoders. However, DNN-PPI does not incorporate physicochemical properties into amino acid representations, and does not employ a Siamese learning architecture to fully characterize pairwise relations of sequences.

1.5 方法介绍

(1)通过预训练氨基酸的嵌入表示

(这个是不是可以用在我们的任务中?)
我觉得是可以的,引入如果不用预训练的embedding ,需要使用PSI-BLAST构造protein profiles,非常麻烦和耗时。
而且
在这里插入图片描述

Each embedding vector is a concatenation of two sub-embeddings, i.e.
(1)The first part ac measures the co-occurrence similarity of the amino acids, which is obtained by pre-training the Skip-Gram model
(2)The second part aph represents the similarity of electrostaticity and hydrophobicity among amino acids. The 20 amino(哦一共有20种氨基酸!!) acids can be clustered into 7 classes based on their dipoles and volumes of the side chains to reflect this property. Thus, aphis a one-hot encoding based on the classification defined by Shen et al. (2007).

(2)RCNN
在这里插入图片描述
①CNN层:
最大池化discretize the convolution results, and preserve the most significant features within each n-stride. By definition, this mechanism divides the size of processed features by n. The outputs from the max-pooling are fed into the bidirectional gated recurrent units in our RCNN encoder.
②残差GRU层
一个疑问:残差机制是否也该应用在我们的工作中?
“In our development, we have found that the residual mechanism is able to drastically simplify the training process, and largely decreases the epochs of parameter updates for the model to converge.”

将上面的unit堆叠多次,将最后一层GRU的输出再经过一个CNN层和池化层得到最终的 high-level sequence embedding of the entire protein sequence
在这里插入图片描述
(3)孪生网络结构
在这里插入图片描述
(4)损失函数
①分类问题使用了Cross-entropy loss。
在这里插入图片描述
疑问:哪里用到了MLP??不是直接用的两个蛋白质序列的embedding做乘法吗?
②回归问题使用Mean squared loss
在这里插入图片描述

1.6 数据集

(1)在这里插入图片描述

疑问:如果我们想与其他方法做比较是不是也需要用the Yeast dataset?
(2)
在这里插入图片描述
在这里插入图片描述

1.7 实验细节

在这里插入图片描述
在这里插入图片描述
疑问:它使用了交叉验证(而且以前很多工作也是这样做的),如果数据集不够大,我们是否也需要用?
补充交叉验证;
在这里插入图片描述

2.Sequence-based prediction of protein-protein interactions: a structure-aware interpretable deep learning mode

2.1与我们的任务比较相似的地方:

Our key conceptual advance is that a well-matched combination of input featurization and model architecture allow for the model to be trained solely from sequence data, supervised only with a binary interaction label, and yet produce an intermediate representation that substantially captures the structural mechanism of interaction between the protein pair.

Using Bepler and Berger’s [12] pre-trained language model, we construct informative protein embeddings(需要重点看) that are endowed with structural information about each of the proteins. The internal representation of our model uses these features to explicitly encode the intuition that a physical interaction between two proteins requires that a subset of the residues in each protein be in contact with the other protein

We note that the use of Bepler and Berger’s pre-trained model allows us to indirectly benefit from the rich data on 3-D structures of individual proteins. In contrast, a PPI prediction method that was directly supervised with 3-D structures of protein complexes, in order to
learn the physical mechanism of interaction, would need to contend with the relatively small size of that corpus [14–16].
疑问:我们能否使用说到的这个预训练模型?

D-SCRIPT, like other recent successful deep learning methods PIPR and DPPI [17, 20], belongs to the class of methods that perform PPI prediction from protein amino acid sequence alone, in contrast to a different class of highly successful PPI prediction methods based on network information

2.2 这个模型的效果:

(1)它的优势主要体现于跨物种,或者说训练集中比较少出现的PPI
We find, as expected, that state-of-the-art PIPR substantially outperforms D-SCRIPT
when predicting interactions between proteins that have many PPI examples in the training set, but the situation is reversed for proteins with a paucity of PPI interactions in the training set. A simple hybrid method that jointly incorporates the confidence of each method performs best of all.

Among sequence-based methods, D-SCRIPT’s strength is in its greater cross-species generalizability and more accurate predictions
in cases where the existing training data is sparse.
(2)On evaluating the physical plausibility of the intermediate contact map representation, we remarkably find that the map partially discovers the structural mechanism of an interaction despite the model having been trained only on sequence data.

2.3 任务定义(模型输入输出)

在这里插入图片描述

2.4 方法介绍

在这里插入图片描述
这篇文章的创新之处还在于 其得到第一阶段的embeddings后,在第二阶段首先预测两个蛋白质序列各氨基酸之间的交互情况
在这里插入图片描述
(1) 得到蛋白质的embeddings
使用了” Bepler, T. & Berger, B. Learning protein sequence embeddings using information from structure. In 7th International Conference on Learning Representations, ICLR 2019 (2019)”中的方法。这是一个基于Bi-LSTM的预训练模型。
作者把这种embeddings与PIPR中的embeddings进行了比较,而且还提供了两种其他embeddinging方法:
在这里插入图片描述
(2)将两个蛋白质序列转化为相同维度
在这里插入图片描述
(3)Residue Contact Module
假设蛋白质A的长度是m,蛋白质B的长度为n。那么这一部分最后得到的是一个m*n的矩阵,其中每一个值在0,1之间,代表两个蛋白质的每个氨基酸之间分别可能contact的概率。

(4)Interaction Prediction Module
从4.3中得到的contact矩阵中计算最后的两个蛋白质序列可能组成复合物的概率p

2.5 与PIPR的详细比较

在这里插入图片描述

这篇关于使用端到端深度学习模型完成PPI任务两篇论文笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/816696

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri