MIT线性代数-方程组的几何解释

2024-03-16 15:12

本文主要是介绍MIT线性代数-方程组的几何解释,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1. 二维空间
    • 1.1 行方向
    • 1.2 列方向
  • 2. 三维空间
    • 2.1 行方向
    • 2.2 列方向

假设有一个方程组 A X = B AX=B AX=B表示如下
2 x − y = 0 (1) 2x-y=0\tag{1} 2xy=0(1)
− x + 2 y = 3 (2) -x+2y=3\tag{2} x+2y=3(2)

  • 矩阵表示如下:
    [ 2 − 1 − 1 2 ] [ x y ] = [ 0 3 ] (3) \begin{bmatrix}2&-1\\\\-1&2\end{bmatrix}\begin{bmatrix}x\\\\y\end{bmatrix}=\begin{bmatrix}0\\\\3\end{bmatrix}\tag{3} 2112 xy = 03 (3)

1. 二维空间

1.1 行方向

  • 从行的方向上可以得到如下图形:
    在这里插入图片描述
  • 得到的交点M(1,2) 就是矩阵求得的x=1,y=2答案。

1.2 列方向

将方程变换成列方向,可得如下结构:
x [ 2 − 1 ] + y [ − 1 2 ] = [ 0 3 ] x\begin{bmatrix}2\\\\-1\end{bmatrix}+y\begin{bmatrix}-1\\\\2\end{bmatrix}=\begin{bmatrix}0\\\\3\end{bmatrix} x 21 +y 12 = 03

  • 可以看成两个向量a= [ 2 − 1 ] \begin{bmatrix}2\\\\-1\end{bmatrix} 21 ,b= [ − 1 2 ] \begin{bmatrix}-1\\\\2\end{bmatrix} 12 的线性组合。
    在这里插入图片描述
  • 从列方向可以看出来,方程组可以看出来是以a= [ 2 − 1 ] \begin{bmatrix}2\\\\-1\end{bmatrix} 21 ,b= [ − 1 2 ] \begin{bmatrix}-1\\\\2\end{bmatrix} 12 为基,以 x, y 为系数,进行向量计算求得向量 [ 0 3 ] \begin{bmatrix}0\\\\3\end{bmatrix} 03

2. 三维空间

2.1 行方向

2 x − y = 0 ; − x + 2 y − z = − 1 ; − 3 y + 4 z = 4 2x-y=0;\quad-x+2y-z=-1;\quad-3y+4z=4 2xy=0;x+2yz=1;3y+4z=4
三维图像如下:
在这里插入图片描述

  • 我们发现,对于方程组来说,我们从行方向画图的时候发现,特别难找到三个平面的交点,为此我们希望用更简单的方式看方程组(列方向)

2.2 列方向

  • 方程组: 2 x − y = 0 ; − x + 2 y − z = − 1 ; − 3 y + 4 z = 4 2x-y=0;\quad-x+2y-z=-1;\quad-3y+4z=4 2xy=0;x+2yz=1;3y+4z=4
  • 转换成矩阵:
    x [ 2 − 1 0 ] + y [ − 1 2 − 3 ] + z [ 0 − 1 4 ] = [ 0 − 1 4 ] x\begin{bmatrix}2\\\\-1\\\\0\end{bmatrix}+y\begin{bmatrix}-1\\\\2\\\\-3\end{bmatrix}+z\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix}=\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix} x 210 +y 123 +z 014 = 014
  • 从列方向的角度来看,我们是以 a = [ 2 − 1 0 ] , b = [ − 1 2 − 3 ] , c = [ 0 − 1 4 ] a=\begin{bmatrix}2\\\\-1\\\\0\end{bmatrix},b=\begin{bmatrix}-1\\\\2\\\\-3\end{bmatrix},c=\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix} a= 210 ,b= 123 ,c= 014 为基,以x,y,z为系数画图,求得向量 z = [ 0 − 1 4 ] z=\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix} z= 014
  • 那么我们就可以以更简单的方式进行求解系数x,y,z
    在这里插入图片描述
  • 通过矩阵方程和图形可以看出,当x=0,y=0,z=1时可以得到结果
    0 [ 2 − 1 0 ] + 0 [ − 1 2 − 3 ] + 1 [ 0 − 1 4 ] = [ 0 − 1 4 ] 0\begin{bmatrix}2\\\\-1\\\\0\end{bmatrix}+0\begin{bmatrix}-1\\\\2\\\\-3\end{bmatrix}+1\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix}=\begin{bmatrix}0\\\\-1\\\\4\end{bmatrix} 0 210 +0 123 +1 014 = 014
  • 只有当向量a,b,c 相互独立,那么就可以通过系数x,y,z来求得向量z;
  • AX=b 表示的是将A的列向量进行组合得到向量b.

这篇关于MIT线性代数-方程组的几何解释的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815860

相关文章

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

poj 3304 几何

题目大意:给出n条线段两个端点的坐标,问所有线段投影到一条直线上,如果这些所有投影至少相交于一点就输出Yes!,否则输出No!。 解题思路:如果存在这样的直线,过投影相交点(或投影相交区域中的点)作直线的垂线,该垂线(也是直线)必定与每条线段相交,问题转化为问是否存在一条直线和所有线段相交。 若存在一条直线与所有线段相交,此时该直线必定经过这些线段的某两个端点,所以枚举任意两个端点即可。

POJ 2318 几何 POJ 2398

给出0 , 1 , 2 ... n 个盒子, 和m个点, 统计每个盒子里面的点的个数。 const double eps = 1e-10 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;}struct Point{double x , y

poj 2653 几何

按顺序给一系列的线段,问最终哪些线段处在顶端(俯视图是完整的)。 const double eps = 1e-10 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;}struct Point{double x , y ;Point(){}Po

嵌入式技术的核心技术有哪些?请详细列举并解释每项技术的主要功能和应用场景。

嵌入式技术的核心技术包括处理器技术、IC技术和设计/验证技术。 1. 处理器技术    通用处理器:这类处理器适用于不同类型的应用,其主要特征是存储程序和通用的数据路径,使其能够处理各种计算任务。例如,在智能家居中,通用处理器可以用于控制和管理家庭设备,如灯光、空调和安全系统。    单用途处理器:这些处理器执行特定程序,如JPEG编解码器,专门用于视频信息的压缩或解压。在数字相机中,单用途