2024年新算法:基于鹅算法GOOSE的城市三维无人机路径规划(复杂地形三维航迹路径规划)

本文主要是介绍2024年新算法:基于鹅算法GOOSE的城市三维无人机路径规划(复杂地形三维航迹路径规划),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要

本文提出了一种利用鹅算法(GOOSE algorithm)GOOSE来解决城市环境下无人机三维路径规划问题的方法。这种方法将复杂的无人机航迹规划任务转化为一个优化问题,然后运用鹅算法GOOSE来解决这个优化问题。鹅算法(GOOSE)是一种受鹅在休息和觅食过程中的行为特征启发的算法,该算法具备强大的全局搜索和局部搜索能力,能够在复杂的搜索空间中找到最优解。我们将GOOSE算法应用于城市复杂地形环境下的无人机三维航迹路径规划。通过对算法的性能进行仿真实验,我们发现该方法能够有效地规划出满足避障要求的无人机三维航迹,并且具有较高的规划效率。这意味着,我们的方法能够在城市复杂环境中,快速而准确地为无人机规划出一条既安全又高效的飞行路径,为无人机的实际应用提供了有力支持。

关键词:城市三维无人机路径规划;复杂地形三维航迹路径规划;鹅算法GOOSE

1. 问题描述

无人机三维路径规划问题,简单来说,就是在三维空间中为无人机设计一条从起点到终点的飞行路线。这条路线不仅要能避开障碍物,还要保证飞行的效率。这个问题相当复杂,因为它涉及到很多限制条件,比如要避免撞到障碍物,还要保证飞行的速度和效率。所以,解决无人机三维路径规划问题需要综合考虑很多因素,才能找到一条既安全又高效的飞行路线。

2.本文提出了一种基于鹅算法GOOSE的无人机三维路径规划方法。该方法将无人机三维路径规划问题转化为一个优化问题,并利用鹅算法GOOSE对优化问题进行求解。

3. 仿真实验

在本文中,我们对基于鹅算法GOOSE的无人机三维路径规划方法进行了仿真实验。实验中,无人机需要在三维空间中飞行,并成功避开所有障碍物。实验的结果表明,这种方法能够非常有效地规划出满足避障要求的无人机三维飞行路径,并且在规划效率方面表现优异。这意味着,我们的方法不仅能够确保无人机在飞行过程中的安全,还能在较短时间内找到最优的飞行路径,提高了无人机的整体飞行效率。

4. 结论

本文介绍了一种新的无人机三维路径规划方法,它基于鹅算法GOOSE进行优化。这种方法将复杂的无人机路径规划问题转化为了一个优化问题,然后利用鹅算法GOOSE来寻找最佳的飞行路径。通过模拟实验,我们发现这个方法非常有效,不仅可以避开障碍物,还能高效地完成飞行任务。这意味着,无人机可以在保证安全的同时,更加快速地完成飞行任务,提高了整体的工作效率。

实验结果如下:

部分主函数代码如下:

%% 三维地图
clear all;
clc;
close all;
warning off%% 载入数据
data.S=[1,1,1];     %起点位置
data.E=[950,950,13]; %终点点位置data.Obstacle=...[40	100	0	50	50	11400	150	0	100	100	8550	100	0	120	160	6850	100	0	100	100	20	400	0	50	200	19100	400	0	50	200	19260	430	0	100	180	7500	320	0	50	100	3600	320	0	50	380	15700	300	0	100	100	16800	500	0	120	160	14300	700	0	120	160	12430	650	0	120	160	1220	900	0	120	160	11100	800	0	120	160	8200	800	0	120	160	10500	800	0	120	160	8750	750	0	120	160	2900	900	0	120	160	6250 250 0   100 100 9];
data.numObstacles=length(data.Obstacle(:,1));
data.mapSize=[1000,1000,20]; %10m 地图尺寸
data.unit=[50,50,1]; %地图精度
data.S0=ceil(data.S./data.unit);
data.E0=ceil(data.E./data.unit);
data.mapSize0=data.mapSize./data.unit;
data.map=zeros(data.mapSize0);for i=1:data.numObstaclesx=1+data.Obstacle(i,1);y=1+data.Obstacle(i,2);z=1+data.Obstacle(i,3);long=data.Obstacle(i,4);wide=data.Obstacle(i,5);pretty=data.Obstacle(i,6);[V,F] = DrawCuboid(long, wide, pretty, x,y,z);x0=ceil(x/data.unit(1));y0=ceil(y/data.unit(2));z0=ceil(z/data.unit(3));long0=ceil(long/data.unit(1));wide0=ceil(wide/data.unit(2));pretty0=ceil(pretty/data.unit(3));data.map(x0:x0+long0,y0:y0+wide0,z0:z0+pretty0)=1;
end

这篇关于2024年新算法:基于鹅算法GOOSE的城市三维无人机路径规划(复杂地形三维航迹路径规划)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/815535

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

java poi实现Excel多级表头导出方式(多级表头,复杂表头)

《javapoi实现Excel多级表头导出方式(多级表头,复杂表头)》文章介绍了使用javapoi库实现Excel多级表头导出的方法,通过主代码、合并单元格、设置表头单元格宽度、填充数据、web下载... 目录Java poi实现Excel多级表头导出(多级表头,复杂表头)上代码1.主代码2.合并单元格3.

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖