【算法与数据结构】深入解析二叉树(二)之堆结构实现

2024-03-16 09:04

本文主要是介绍【算法与数据结构】深入解析二叉树(二)之堆结构实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述

文章目录

  • 📝二叉树的顺序结构及实现
    • 🌠 二叉树的顺序结构
    • 🌠 堆的实现
    • 🌠 堆的实现
      • 🌉堆向下调整算法
      • 🌉堆的创建
      • 🌉建堆时间复杂度
      • 🌉堆的插入
      • 🌉堆的删除
    • 🌠堆向上调整算法
      • 🌉堆的接口
    • 🌠堆的实现
    • 🌠堆的实现代码测试
  • 🚩总结


📝二叉树的顺序结构及实现

🌠 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
在这里插入图片描述

🌠 堆的实现

堆(heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。堆总是满足下列性质:
堆的物理结构本质上是顺序存储的,是线性的。但在逻辑上不是线性的,是完全二叉树的这种逻辑储存结构。 堆的这个数据结构,里面的成员包括一维数组,数组的容量,数组元素的个数,有两个直接后继。
堆的定义如下:n个元素的序列{k1,k2,ki,…,kn}当且仅当满足下关系时,称之为堆。
(且)或者(), ()
若将和此次序列对应的一维数组(即以一维数组作此序列的存储结构)看成是一个完全二叉树,则堆的含义表明,完全二叉树中所有非终端结点的值均不大于(或不小于)其左、右孩子结点的值。由此,若序列{k1,k2,…,kn}是堆,则堆顶元素(或完全二叉树的根)必为序列中n个元素的最小值(或最大值)。
在这里插入图片描述

将根结点最大的堆叫做最大堆或大根堆,根结点最小的堆叫做最小堆或小根堆。常见的堆有二叉堆、斐波那契堆等
堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。

🌠 堆的实现

🌉堆向下调整算法

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

int array[] = {27,15,19,18,28,34,65,49,25,37};

在这里插入图片描述

void AdjustDown(HPDataType* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child+1<n && a[child + 1]>a[child]){child++;}if (a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}

🌉堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

int a[] = {1,5,3,8,7,6};

在这里插入图片描述

代码:

int size=sizeof(array)/sizeof(int);
//向下建堆,复杂度为O(N)
for (int i = (size - 1 - 1) / 2; i >= 0; i--)
{AdjustDown(array, size,i);
}
void AdjustDown(HPDataType* a, int n, int parent)
{ //a是数组指针,n是数组长度,parent是当前需要下调的父结点索引int child = parent * 2 + 1;//child表示父结点parent的左孩子结点索引,因为是完全二叉堆,可以通过parent和2计算得到while (child < n){//如果左孩子存在if (child + 1 < n && a[child + 1] < a[child]){//如果右孩子也存在,并且右孩子值小于左孩子,则child指向右孩子child++;}if (a[child] < a[parent])//如果孩子结点值小于父结点值,则需要交换{Swap(&a[child], &a[parent]);//交换孩子和父结点parent = child;//父结点下移为当前孩子结点child = parent * 2 + 1;//重新计算新的左孩子结点索引}else{break;}}
}

这是向下调整,最终形成小根堆,如果你想修改大根堆只需改变两个代码方向即可:

if (child+1<n && a[child + 1]>a[child])
if (a[child] > a[parent])

🌉建堆时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

复杂度:O(N)
在这里插入图片描述

🌉堆的插入

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。

在这里插入图片描述

void HPPush(HP* php, HPDataType x)
{assert(php);if (php->size == php->capacity){size_t newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDataType * tmp = realloc(php->a, sizeof(HPDataType) * newCapacity);if (tmp == NULL){perror("realloc fail");return;}php->a = tmp;php->capacity = newCapacity;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);
}

🌉堆的删除

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。
在这里插入图片描述

//时间复杂度是:logN
void HPPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->a[0], &php->a[php->size - 1]);php->size--;AdjustDown(php->a, php->size, 0);
}

🌠堆向上调整算法

堆向上调整算法主要用于堆排序中,删除堆顶元素后,将最后一个元素补至堆顶,然后需要向上调整。

//向上调整,建堆O(N*logN)
for (int i = 1; i < size; i++)
{ //for循环从索引1开始,到size结束,即从第二个元素开始。AdjustUp(array, i);
}
void AdjustUp(HPDataType* a, int child)
{int parent = (child - 1) / 2;//计算父节点的位置:父节点位置 = (当前节点位置-1)/2while (child > 0)//如果当前节点位置大于0,并且当前节点值小于父节点值,需要向上调整:{if (a[parent] < a[child]){Swap(&a[parent], &a[child]);child = parent;parent = (parent - 1) / 2;}//将当前节点位置设为父节点的位置,重复执行步骤2和步骤3//直到当前节点位置为0,或者当前节点值不小于父节点值为止。else{break;}}
}

堆向上调整的主要步骤::确定需要调整的子节点,通常是补至堆顶的最后一个元素。
时间复杂度为O(N*logN)
在这里插入图片描述

🌉堆的接口

# define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
#include<string.h>typedef int HPDataType;typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;void Swap(int* px, int* py);
void AdjustUp(HPDataType* a, int child);
void AdjustDown(HPDataType* a, int n, int parent);//堆的简单初始化
//void HPInit(HP* php);
//堆的初始化+建堆
void HPInitArray(HP* php, HPDataType* a, int n);
//堆的销毁
void HPDestroy(HP* php);
//堆插入数据然后保持数据是堆
void HPPush(HP* php, HPDataType x);
//取堆顶的数据
HPDataType HPTop(HP* php);
//删除堆数据
void HPPop(HP* php);
//堆的数据个数
int HeapSize(HP* php);
//堆的判空
bool HPEmpty(HP* php);

🌠堆的实现

#include"HeadSort.h"
//堆的简单初始化
void HPInit(HP* php)
{assert(php);php->a = NULL;php->size = 0;php->capacity = 0;
}void HPInitArray(HP* php, HPDataType* a, int n)
{assert(php);php->a = (HPDataType*)malloc(sizeof(HPDataType) * n);if (php->a == NULL){perror("malloc fail");return;}memcpy(php->a, a, sizeof(HPDataType) * n);php->capacity = php->size = n;//HPInitArray:/*初始化堆数组,并将数据拷贝过来有两种方式建堆:向上调整:每个节点都与父节点比较,时间复杂度O(NlogN)向下调整:从最后一个非叶子节点开	始,每个节点与子节点比较,时间复杂度O(N)这里采用向下建堆,复杂度更低*///向上调整,建堆O(N*logN)/*for (int i = 1; i < php->size; i++){AdjustUp(php->a, i);}*///向下建堆,复杂度为O(N)for (int i = (php->size - 1 - 1) / 2; i >= 0; i--){AdjustDown(php->a, php->size,i);}
}void HPDestroy(HP* php)
{assert(php);free(php->a);php->a = NULL;php->capacity = 0;php->size = 0;
}void Swap(int* px, int* py)
{int temp = *px;*px = *py;*py = temp;
}void AdjustUp(HPDataType* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[parent] > a[child]){Swap(&a[parent], &a[child]);child = parent;parent = (parent - 1) / 2;}else{break;}}
}void HPPush(HP* php, HPDataType x)
{assert(php);if (php->size == php->capacity){size_t newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDataType * tmp = realloc(php->a, sizeof(HPDataType) * newCapacity);if (tmp == NULL){perror("realloc fail");return;}php->a = tmp;php->capacity = newCapacity;}php->a[php->size] = x;php->size++;AdjustUp(php->a, php->size - 1);
}HPDataType HPTop(HP* php)
{assert(php);return php->a[0];}void AdjustDown(HPDataType* a, int n, int parent)
{int child = parent * 2 + 1;while (child < n){if (child+1<n && a[child + 1]<a[child]){child++;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}//时间复杂度是:logN
void HPPop(HP* php)
{assert(php);assert(php->size > 0);Swap(&php->a[0], &php->a[php->size - 1]);php->size--;AdjustDown(php->a, php->size, 0);
}int HeapSize(HP* php)
{assert(php);return php->size;
}bool HPEmpty(HP* php)
{assert(php);return php->size == 0;
}

🌠堆的实现代码测试

int main()
{int a[] = { 60,70,65,50,32,100 };HP hp;HPInitArray(&hp, a, sizeof(a) / sizeof(int));/*HPInit(&hp);for (int i = 0; i < sizeof(a) / sizeof(int); i++){                         HPPush(&hp, a[i]);}printf("%d\n", HPTop(&hp));HPPop(&hp);printf("%d\n", HPTop(&hp));*/while (!HPEmpty(&hp)){printf("%d\n", HPTop(&hp));HPPop(&hp);}HPDestroy(&hp);return 0;
}

在这里插入图片描述


🚩总结

感谢你的收看,如果文章有错误,可以指出,我不胜感激,让我们一起学习交流,如果文章可以给你一个小小帮助,可以给博主点一个小小的赞😘

请添加图片描述

这篇关于【算法与数据结构】深入解析二叉树(二)之堆结构实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/814980

相关文章

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

MySQL8.0设置redo缓存大小的实现

《MySQL8.0设置redo缓存大小的实现》本文主要在MySQL8.0.30及之后版本中使用innodb_redo_log_capacity参数在线更改redo缓存文件大小,下面就来介绍一下,具有一... mysql 8.0.30及之后版本可以使用innodb_redo_log_capacity参数来更改

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形