景联文科技:提供通用多模态数据,助力AI多模态领域实现飞跃式发展

本文主要是介绍景联文科技:提供通用多模态数据,助力AI多模态领域实现飞跃式发展,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回顾2023年,以ChatGPT为代表的通用人工智能大模型在全球范围内掀起了新一轮人工智能产业发展浪潮,我国人工智能大模型市场呈现百“模”争鸣、日新月异的迅猛发展态势。

根据大模型之家、钛媒体数据,2023年中国大模型市场规模达到147亿人民币,同比增长110.0%,预计到2028年中国大模型市场规模将达到1179亿人民币。

其中,多模态大模型市场规模有望快速增长。第一财经数据显示,预计至2025年,中国多模态内容市场规模将达到832.7亿美元,2018-2025年复合增长率达65.02%。多模态大模型将主要应用于教育、医疗、游戏、商业定制和影视等领域。

不久前,OpenAI发布首个文生视频模型Sora,极大地推动了AI多模态领域飞速发展,AI创作等相关领域将迎来深度变革,AI赋能范围日益扩大。

高质量的多模态数据是构建和训练多模态大模型的基础,它决定了模型能否有效捕获和利用不同模态间复杂的语义关系,进而影响到模型的整体性能和应用价值。随着多模态技术的发展,多模态数据的需求和重要性日益增加,对于推动人工智能向着更深层次的通用智能方向迈进具有重要作用。

景联文科技是大模型数据供应商,致力于为不同阶段的模型算法匹配高质量多模态数据资源。

通用多模态数据集

音频数据:

  1. 普通话(人数 200 万以上,采样率 44.1Khz 及 以上,16bit) 100万小时
  2. 方言 2.7千小时

图片生成及隐式/显示推理多模态数据:

  1. 图文复杂描述 50万本
  2. 图文推理问答对 400万本
  3. 4K 高清图片 5000万张

视频生成及隐式/显示推理多模态数据:

  1. 视频简单描述
  2. 视频复杂描述
  3. 视频推理问答对

同时景联文科技提供大模型训练数据的标注服务,建立了数据分发、清洗、标注、质检、交付的标准化操作流程,为全球数千家人工智能从业公司和高校科研机构交付海量、高质量的多模态大模型训练数据。

景联文科技|数据采集|数据标注|多模态大模型训练数据

助力人工智能技术,赋能传统产业智能转型升级

文章图文著作权归景联文科技所有,商业转载请联系景联文科技获得授权,非商业转载请注明出处。

这篇关于景联文科技:提供通用多模态数据,助力AI多模态领域实现飞跃式发展的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/814569

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu