免费:差分进化算法(Differential Evolution, DE)原理及其Matlab代码,详细中文版!

本文主要是介绍免费:差分进化算法(Differential Evolution, DE)原理及其Matlab代码,详细中文版!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

差分进化算法(Differential Evolution, DE)原理及其Matlab代码,详细版!!!

差分进化算法是一种有效且简单的全局优化算法,适用于解决连续优化问题。由Storn和Price于1997年提出,以其简单的结构、易于实现的特性、少量的参数需求,以及对初始值选择的低敏感性而受到广泛应用。

一、差分进化算法主要通过以下四个步骤进行:

1)种群初始化

在算法开始时随机生成一个初始种群,每个个体代表问题空间中的一个潜在解。种群大小是预设的,并在进化过程中保持不变。

2)变异操作

    对于种群中的每一个个体,随机选择三个不同的个体(a, b, c),并生成一个新的个体(v)使用下述变异策略:v = a + F *(b - c)其中,F是差分权重,是控制变异幅度的超参数,通常设置在0到2之间。

3)交叉操作

  - 对变异后的个体和当前种群中的个体执行交叉操作,生成试验个体。通过交叉操作增加种群的多样性,通常使用均匀交叉,每个基因位的交叉概率由超参数交叉率(CR)控制。

4)选择操作

    比较每个试验个体与当前种群中相对应的个体,若试验个体的适应度更好,则在种群中替换相应的个体,否则保持原个体不变。这确保了种群的适应度逐渐变好(一般是越小越好,当然也可以越大越好,根据目标函数设置)。

二、差分进化算法的参数

差分进化算法的性能很大程度上依赖于参数设置,主要参数包括:

种群大小:影响搜索空间的覆盖程度及算法的计算复杂度。

差分权重F:控制变异步骤中的缩放比例,影响算法平衡全局搜索与局部搜索的能力。

交叉率CR:控制交叉步骤中的基因交换程度,较高的CR可增加种群多样性。

三、应用与局限

       差分进化算法因其简单高效,在许多实际问题中得到应用,如数值优化、图像分割、参数估计、优化设计等。然而,它也有局限性,如可能在局部最优解附近停滞,对某些问题可能需要特定的变异与交叉策略来提高效率。实践是学习差分进化算法最好的方式。尝试应用它解决一些标准的优化问题,比如函数最小化,有助于深入理解其工作原理及参数调整方法。

四、Matlab代码

以最简单的球函数最小化为例,求解的Matlab代码如下,复制到matlab即可运行:

clc;
clear;
close all;%% 问题定义
CostFunction=@(x) Sphere(x);    % 代价函数, 以经典的球函数为例,最小化目标函数nVar=20;            % 决策变量的数量VarSize=[1 nVar];   % 决策变量矩阵大小VarMin=-5;          % 决策变量的下界
VarMax= 5;          % 决策变量的上界%% 差分进化参数
MaxIt=1000;         % 最大迭代次数nPop=50;            % 种群大小F_min=0.2;       % 缩放因子F的下界
F_max=0.8;       % 缩放因子F的上界pCR=0.2;            % 交叉概率%% 种群初始化
empty_individual.Position=[];
empty_individual.Cost=[];BestSol.Cost=inf;pop=repmat(empty_individual, nPop, 1);for i=1:nPoppop(i).Position=unifrnd(VarMin, VarMax, VarSize);pop(i).Cost=CostFunction(pop(i).Position);if pop(i).Cost < BestSol.CostBestSol=pop(i);end
endBestCost=zeros(MaxIt, 1);%% 差分进化主循环
for it=1:MaxItfor i=1:nPopx=pop(i).Position;% 随机选择三个个体A=randperm(nPop);A(A==i)=[];a=A(1);b=A(2);c=A(3);% 变异操作F=unifrnd(F_min, F_max, VarSize);y=pop(a).Position + F .* (pop(b).Position - pop(c).Position);y = max(y, VarMin);y = min(y, VarMax);% 交叉操作z=zeros(size(x));j0=randi([1 numel(x)]);for j=1:numel(x)if j==j0 || rand<=pCRz(j)=y(j);elsez(j)=x(j);endendNewSol.Position=z;NewSol.Cost=CostFunction(NewSol.Position);% 选择操作if NewSol.Cost < pop(i).Costpop(i)=NewSol;if pop(i).Cost < BestSol.CostBestSol=pop(i);endendend% 更新最佳成本BestCost(it)=BestSol.Cost;% 显示迭代信息(已注释)disp(['迭代 ', num2str(it), ' 次:最佳成本 = ', num2str(BestCost(it))]);
end%% 显示结果
figure;
semilogy(BestCost, '-r','LineWidth', 2);
xlabel('迭代');
ylabel('最佳成本');
title('差分进化算法DE求解球函数')
grid on;
axis tight
legend('DE')function z=Sphere(x)z=sum(x.^2);end

运行结果如下:

这篇关于免费:差分进化算法(Differential Evolution, DE)原理及其Matlab代码,详细中文版!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/812590

相关文章

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实