【DL经典回顾】激活函数大汇总(十一)(Tanh Shrink Threshold附代码和详细公式)

本文主要是介绍【DL经典回顾】激活函数大汇总(十一)(Tanh Shrink Threshold附代码和详细公式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

激活函数大汇总(十一)(Tanh Shrink & Threshold附代码和详细公式)

更多激活函数见激活函数大汇总列表

一、引言

欢迎来到我们深入探索神经网络核心组成部分——激活函数的系列博客。在人工智能的世界里,激活函数扮演着不可或缺的角色,它们决定着神经元的输出,并且影响着网络的学习能力与表现力。鉴于激活函数的重要性和多样性,我们将通过几篇文章的形式,本篇详细介绍两种激活函数,旨在帮助读者深入了解各种激活函数的特点、应用场景及其对模型性能的影响。

在接下来的文章中,我们将逐一探讨各种激活函数,从经典到最新的研究成果。

限于笔者水平,对于本博客存在的纰漏和错误,欢迎大家留言指正,我将不断更新。

二、Tanh Shrink

Tanh Shrink激活函数是一种结合了双曲正切函数(Tanh)和Shrinkage思想的激活函数。它在某些深度学习模型中用于处理和转换数据,尤其是在需要强调数据的非线性特征和进行稀疏编码时。

1. 数学定义

Tanh Shrink激活函数的数学表达式定义为:

TanhShrink ⁡ ( x ) = x − tanh ⁡ ( x ) \operatorname{TanhShrink}(x)=x-\tanh (x) TanhShrink(x)=xtanh(x)
其中, x x x是函数的输入。这个函数实际上是输入 x x x减去它的双曲正切值 tanh ⁡ ( x ) \tanh (x) tanh(x)
在这里插入图片描述

2. 函数特性

  • 非线性:Tanh Shrink保持了Tanh函数的非线性特性,使得它可以有效地处理和转换输入数据。
  • 输出范围:与Tanh函数不同,Tanh Shrink的输出范围不是固定的。其值取决于输入 x x x tanh ⁡ ( x ) \tanh (x) tanh(x)之间的差异。
  • 自正则化性质:通过从输入值中减去其双曲正切值,Tanh Shrink在一定程度上实现了自正则化,有助于模型抵抗过拟合。

3. 导数

Tanh Shrink函数的导数相对简单,可以表示为:

d d x TanhShrink ⁡ ( x ) = 1 − tanh ⁡ 2 ( x ) \frac{d}{d x} \operatorname{TanhShrink}(x)=1-\tanh ^2(x) dxdTanhShrink(x)=1tanh2(x)
这个导数表明,Tanh Shrink函数在任意点 x x x处的梯度取决于 tanh ⁡ ( x ) \tanh (x) tanh(x)的平方。

4. 使用场景与局限性

使用场景

  • 稀疏编码:在需要稀疏表示输入数据的应用中,如自编码器和某些压缩算法。
  • 去噪和特征提取:在图像处理和信号处理领域,Tanh Shrink可以帮助模型去除噪声并更好地捕获数据的关键特征。

局限性

  • 计算复杂度:与简单的激活函数(如ReLU)相比,Tanh Shrink需要额外的计算步骤(计算 tanh ⁡ ( x ) \tanh (x) tanh(x)),这可能会增加整体的计算成本。
  • 梯度消失问题:虽然Tanh Shrink有自正则化的特性,但它仍然可能面临Tanh函数本身的梯度消失问题,尤其是当输入的绝对值非常大时。

5.代码实现

实现Tanh Shrink激活函数的Python代码可以利用NumPy库,这个库为进行数组和数学运算提供了强大的支持。下面是一个简单的Tanh Shrink函数实现及其解读:

import numpy as npdef tanh_shrink(x):"""计算Tanh Shrink激活函数的值。参数:x -- 输入值,可以是一个数值、NumPy数组或者多维数组。返回:Tanh Shrink激活后的结果。"""return x - np.tanh(x)
解读
  • 双曲正切计算np.tanh(x)计算了输入x的双曲正切值。这是Tanh Shrink函数核心的一步,因为它提供了输入值的非线性变换。
  • 减去双曲正切值:通过从原始输入x中减去其双曲正切值,实现了Tanh Shrink激活函数的定义。这种操作有助于调节输入值,尤其是对于较大或较小的输入值,可以在一定程度上抑制其影响,从而促进模型输出的稀疏性。
  • 向量化操作:这个实现通过使用NumPy自然地支持向量化操作,这意味着tanh_shrink函数可以直接作用于整个数组,无需显式地循环遍历数组中的每个元素。这对于处理大规模数据集非常有用,能显著提高计算效率。
示例使用

以下是如何使用定义的tanh_shrink函数来计算一组输入值的Tanh Shrink激活:

x = np.array([-2, -1, 0, 1, 2])
tanh_shrink_values = tanh_shrink(x)print("Tanh Shrink Values:", tanh_shrink_values)

这段代码展示了对数组x应用Tanh Shrink函数的结果。

三、Threshold

Threshold激活函数是一种在深度学习模型中较少使用的激活函数,其核心思想是对输入值施加一个固定阈值,输入值超过这个阈值时才会被激活。这种激活函数在某些特定场景下可能有用,尤其是在需要明确激活和非激活状态的模型中。

1. 数学定义

Threshold激活函数可以定义为:

Threshold  ( x ) = { 1 if  x > θ 0 otherwise  \text { Threshold }(x)= \begin{cases}1 & \text { if } x>\theta \\ 0 & \text { otherwise }\end{cases}  Threshold (x)={10 if x>θ otherwise 
其中, x x x是函数的输入, θ \theta θ是预设的阈值。
在这里插入图片描述

2. 函数特性

  • 二值输出:Threshold函数将输出限制为0或1,这使得其输出非常明确,要么是完全激活,要么是完全不激活。
  • 简单性:这个激活函数非常简单,计算代价低。
  • 非连续性:Threshold函数在阈值 θ \theta θ处是非连续的,这可能会导致训练过程中的梯度问题。

3. 导数

Threshold函数的一个主要缺点是它在大部分点上的导数为0,在阈值处导数未定义。这意味着它不能直接用于基于梯度的优化方法,如反向传播,因为它不会对输入的微小变化做出反应。

4. 使用场景与局限性

使用场景

  • 二分类问题:在一些特定的二分类问题中,Threshold函数可以作为输出层的激活函数,直接产生二分类结果。
  • 特征选择:在预处理步骤或网络的某一层中,Threshold激活可以用于特征选择,即只让重要的信号通过。

局限性

  • 训练困难:由于其非连续性和导数的特性,使用Threshold激活函数的网络难以通过传统的基于梯度的方法进行训练。
  • 灵活性有限:Threshold函数提供的是硬性的决策边界,这在处理复杂或模糊的分类问题时可能不够灵活或有效。

尽管Threshold激活函数在理论上简单明了,但在实际深度学习应用中,其使用受到了较大限制,主要因为它不适合梯度下降等常用的优化算法。在选择使用Threshold函数时,需要仔细考虑模型的需求和训练方法。

5.代码实现

import numpy as npdef threshold_activation(x, theta=0.0):"""计算Threshold激活函数的值。参数:x -- 输入值,可以是一个数值、NumPy数组或者多维数组。theta -- 阈值,默认为0.0。返回:根据Threshold激活函数计算得到的结果。"""return (x > theta).astype(float)
解读
  • 阈值判断:这个函数通过比较输入x与阈值theta,来决定输出是0还是1。当x大于theta时,输出1;否则输出0。
  • 类型转换:使用.astype(float)将布尔数组转换为浮点数数组,以便于与深度学习框架和数学运算兼容。
  • 向量化操作:该实现利用了NumPy的向量化操作,使得函数可以高效地同时处理多个输入值,无需显式循环。
示例使用
x = np.array([-1, 0, 0.5, 1])
threshold_values = threshold_activation(x, theta=0.5)print("Threshold Activation Values:", threshold_values)

这段代码展示了如何对一个数组x应用Threshold激活函数,其中阈值theta被设定为0.5。

四、参考文献

对于Tanh Shrink和Threshold函数的直接文献引用可能较少,因为它们不像某些激活函数那样在深度学习社区中广泛使用。然而,它们的概念和应用可以在更广泛的深度学习、信号处理和神经网络优化的文献中找到间接的讨论。特别是,它们在讨论网络的稀疏性、正则化策略以及早期神经网络模型的设计和分析时可能会被提及。

这篇关于【DL经典回顾】激活函数大汇总(十一)(Tanh Shrink Threshold附代码和详细公式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/812024

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

最新版IDEA配置 Tomcat的详细过程

《最新版IDEA配置Tomcat的详细过程》本文介绍如何在IDEA中配置Tomcat服务器,并创建Web项目,首先检查Tomcat是否安装完成,然后在IDEA中创建Web项目并添加Web结构,接着,... 目录配置tomcat第一步,先给项目添加Web结构查看端口号配置tomcat    先检查自己的to

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

使用Nginx来共享文件的详细教程

《使用Nginx来共享文件的详细教程》有时我们想共享电脑上的某些文件,一个比较方便的做法是,开一个HTTP服务,指向文件所在的目录,这次我们用nginx来实现这个需求,本文将通过代码示例一步步教你使用... 在本教程中,我们将向您展示如何使用开源 Web 服务器 Nginx 设置文件共享服务器步骤 0 —

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

Java 枚举的常用技巧汇总

《Java枚举的常用技巧汇总》在Java中,枚举类型是一种特殊的数据类型,允许定义一组固定的常量,默认情况下,toString方法返回枚举常量的名称,本文提供了一个完整的代码示例,展示了如何在Jav... 目录一、枚举的基本概念1. 什么是枚举?2. 基本枚举示例3. 枚举的优势二、枚举的高级用法1. 枚举

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

手把手教你idea中创建一个javaweb(webapp)项目详细图文教程

《手把手教你idea中创建一个javaweb(webapp)项目详细图文教程》:本文主要介绍如何使用IntelliJIDEA创建一个Maven项目,并配置Tomcat服务器进行运行,过程包括创建... 1.启动idea2.创建项目模板点击项目-新建项目-选择maven,显示如下页面输入项目名称,选择