汉诺塔问题(Hanoi问题)的递归算法与非递归算法详解

2024-03-15 03:18

本文主要是介绍汉诺塔问题(Hanoi问题)的递归算法与非递归算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

递归算法分析如下,
设A上有n个盘子。
如果n=1,则将圆盘从A直接移动到C。
如果n=2,则:
(1)将A上的n-1(等于1)个圆盘移到B上;
(2)再将A上的一个圆盘移到C上;
(3)最后将B上的n-1(等于1)个圆盘移到C上。
如果n=3,则:
A)将A上的n-1(等于2,令其为n`)个圆盘移到B(借助于C),步骤如下:
(1)将A上的n`-1(等于1)个圆盘移到C上。
(2)将A上的一个圆盘移到B。
(3)将C上的n`-1(等于1)个圆盘移到B。
B)将A上的一个圆盘移到C。
C)将B上的n-1(等于2,令其为n`)个圆盘移到C(借助A),步骤如下:
(1)将B上的n`-1(等于1)个圆盘移到A。
(2)将B上的一个盘子移到C。
(3)将A上的n`-1(等于1)个圆盘移到C。到此,完成了三个圆盘的移动过程。

从上面分析可以看出,当n大于等于2时, 移动的过程可分解为三个步骤:
第一步 把A上的n-1个圆盘移到B上;
第二步 把A上的一个圆盘移到C上;
第三步 把B上的n-1个圆盘移到C上;
其中第一步和第三步是类同的。 当n=3时,第一步和第三步又分解为类同的三步,即把n`-1个圆盘从一个针移到另一个针上,这里的n`=n-1。




Hanoi塔问题中函数调用时系统所做工作

一个函数在运行期调用另一个函数时,在运行被调用函数之前,系统先完成3件事:

①将所有的实参、返回地址等信息传递给被调用函数保存。

②为被调用函数的局部变量分配存储区;

③将控制转移到被调用函数的入口。

从被调用函数返回调用函数前,系统也应完成3件事:

①保存被调用函数的结果;

②释放被调用函数的数据区;

③依照被调用函数保存的返回地址将控制转移到调用函数。

当有多个函数构成嵌套调用时,按照“后调用先返回”的原则(LIFO),上述函数之间的信息传递和控制转移必须通过“栈”来实现,即系统将整个程序运行时所需的数据空间安排在一个栈中,每当调用一个函数时,就为其在栈顶分配一个存储区,每当从一个函数退出时,就释放其存储区,因此当前运行函数的数据区必在栈顶。堆栈特点:LIFO,除非转移或中断,堆栈内容的存或取表现出线性表列的性质。正是如此,程序不要求跟踪当前进入堆栈的真实单元,而只要用一个具有自动递增或自动递减功能的堆栈计数器,便可正确指出最后一次信息在堆栈中存放的地址。

一个递归函数的运行过程类型于多个函数的嵌套调用,只是调用函数和被调用函数是同一个函数。因此,和每次调用相关的一个重要的概念是递归函数运行的“层次”。假设调用该递归函数的主函数为第0层,则从主函数调用递归函数为进入第1层;从第i层递归调用本函数为进入下一层,即i+1层。反之,退出第i层递归应返回至上一层,即i-1层。为了保证递归函数正确执行,系统需设立一个“递归工作栈”,作为整个递归函数运行期间使用的数据存储区。每一层递归所需信息构成一个“工作记录”,其中包括所有实参、所有局部变量以及上一层的返回地址。每进入一层递归,就产生一个新的工作记录压入栈顶。每退出一层递归,就从栈顶弹出一个工作记录,则当前执行层的工作记录必是递归工作栈栈顶的工作记录,称这个记录为“活动记录”,并称指示活动记录的栈顶指针为“当前环境指针”。
递归源码如下:
#include<stdio.h>
/*主程序*/
int hanoi(int,char,char,char);
int  main()
{
char a='A',b='B',c='C';
int dishes;

while(1)
{
printf("输入盘子个数:  ");
scanf("%d",&dishes);
hanoi(dishes,a,b,c);
}
return 0;
}

int hanoi(int dishs,char ap,char bp,char cp)

{
if  ( dishs == 1 )
printf("盘子从%c 移动到 %c /n",ap,cp);
else
{
hanoi(dishs - 1,ap,cp,bp );
printf("盘子从%c 移动到 %c/n",ap,cp);
hanoi(dishs - 1,bp,ap,cp);
}
return 0;
}

非递归算法概述
/*《数学营养菜》(谈祥柏 著)提供的一种方法,编了一个程序来实现。
*/
/*
算法介绍:
首先容易证明,当盘子的个数为n时,移动的次数应等于2^n - 1。
一位美国学者发现一种出人意料的方法,只要轮流进行两步操作就可以了。
首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上。
根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放 A B C;
若n为奇数,按顺时针方向依次摆放 A C B。
(1)按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B;
若圆盘1在柱子B,则把它移动到C;若圆盘1在柱子C,则把它移动到A。
(2)接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。
即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较小的圆盘
这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。
(3)反复进行(1)(2)操作,最后就能按规定完成汉诺塔的移动。
*/
#include <iostream>
using namespace std;
const int MAX = 64; //圆盘的个数最多为64


struct st{ //用来表示每根柱子的信息

int s[MAX]; //柱子上的圆盘存储情况

int top; //栈顶,用来最上面的圆盘

char name; //柱子的名字,可以是A,B,C中的一个


int Top()//取栈顶元素

{
return s[top];
}
int Pop()//出栈

{
return s[top--];
}
void Push(int x)//入栈

{
s[++top] = x;
}
} ;

long Pow(int x, int y); //计算x^y

void Creat(st ta[], int n); //给结构数组设置初值

void Hannuota(st ta[], long max); //移动汉诺塔的主要函数


int main(void)
{
int n;
cin >> n; //输入圆盘的个数


st ta[3]; //三根柱子的信息用结构数组存储

Creat(ta, n); //给结构数组设置初值


long max = Pow(2, n) - 1;//动的次数应等于2^n - 1

Hannuota(ta, max);//移动汉诺塔的主要函数


system("pause");
return 0;
}

void Creat(st ta[], int n)
{
ta[0].name = 'A';
ta[0].top = n-1;
for (int i=0; i<n; i++) //把所有的圆盘按从大到小的顺序放在柱子A上

ta[0].s[i] = n - i;

ta[1].top = ta[2].top = 0;//柱子B,C上开始没有没有圆盘

for (int i=0; i<n; i++)
ta[1].s[i] = ta[2].s[i] = 0;

if (n%2 == 0) //若n为偶数,按顺时针方向依次摆放 A B C

{
ta[1].name = 'B';
ta[2].name = 'C';
}
else //若n为奇数,按顺时针方向依次摆放 A C B

{
ta[1].name = 'C';
ta[2].name = 'B';
}
}

long Pow(int x, int y)
{
long sum = 1;
for (int i=0; i<y; i++)
sum *= x;

return sum;
}

void Hannuota(st ta[], long max)
{
int k = 0; //累计移动的次数

int i = 0;
int ch;
while (k < max)
{
//按顺时针方向把圆盘1从现在的柱子移动到下一根柱子

ch = ta[i%3].Pop();
ta[(i+1)%3].Push(ch);
cout << ++k << ": " << "Move disk " << ch << " from " << ta[i%3].name << " to " << ta[(i+1)%3].name << endl;
i++;
//把另外两根柱子上可以移动的圆盘移动到新的柱子上

if (k < max)
{ //把非空柱子上的圆盘移动到空柱子上,当两根柱子都为空时,移动较小的圆盘

if (ta[(i+1)%3].Top() == 0 || ta[(i-1)%3].Top() > 0 && ta[(i+1)%3].Top() > ta[(i-1)%3].Top())
{
ch = ta[(i-1)%3].Pop();
ta[(i+1)%3].Push(ch);
cout << ++k << ": " << "Move disk " << ch << " from " << ta[(i-1)%3].name << " to " << ta[(i+1)%3].name << endl;
}
else
{
ch = ta[(i+1)%3].Pop();
ta[(i-1)%3].Push(ch);
cout << ++k << ": " << "Move disk " << ch << " from " << ta[(i+1)%3].name << " to " << ta[(i-1)%3].name << endl;
}
}
}
}

 

这篇关于汉诺塔问题(Hanoi问题)的递归算法与非递归算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810614

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监