本文主要是介绍tarjan算法——求无向图的割点和桥,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一.基本概念
1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不连通,则称该边为桥。
2.割点:无向连通图中,如果删除某点后,图变成不连通,则称该点为割点。
二:tarjan算法在求桥和割点中的应用
1.割点:
1)当前节点为树根的时候,条件是“要有多余一棵子树”(如果这有一颗子树,去掉这个点也没有影响,如果有两颗子树,去掉这点,两颗子树就不连通了。)
2)当前节点U不是树根的时候,条件是“low[v]>=dfn[u]”,也就是在u之后遍历的点,能够向上翻,最多到u,如果能翻到u的上方,那就有环了,去掉u之后,图仍然连通。 保证v向上最多翻到u才可以
2.桥:若是一条无向边(u,v)是桥,
1)当且仅当无向边(u,v)是树枝边的时候,需要满足dfn(u)<low(v),也就是v向上翻不到u及其以上的点,那么u–v之间一定能够有1条或者多条边不能删去,因为他们之间有一部分无环,是桥。
如果v能上翻到u那么u–v就是一个环,删除其中一条路径后,能然是连通的。
3.注意点:
1)求桥的时候:因为边是无方向的,所以父亲孩子节点的关系需要自己规定一下,
在tarjan的过程中if(v不是u的父节点) low[u]=min(low[u],dfn[v]);
因为如果v是u的父亲,那么这条无向边就被误认为是环了。
2)找桥的时候:注意看看有没有重边,有重边的边一定不是桥,也要避免误判。
4.也可以先进行tarjan(),求出每一个点的dfn和low,并记录dfs过程中的每个点的父节点,遍历所有点的low,dfn来寻找桥和割点
三:求桥和割点的模板
#include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
#include<vector>
#define N 201
vector<int>G[N];
int n,m,low[N],dfn[N];
bool is_cut[N];
int father[N];
int tim=0;
void input()
{scanf("%d%d",&n,&m);int a,b;for(int i=1;i<=m;++i){scanf("%d%d",&a,&b);G[a].push_back(b);/*邻接表储存无向边*/G[b].push_back(a);}
}
void Tarjan(int i,int Father)
{father[i]=Father;/*记录每一个点的父亲*/dfn[i]=low[i]=tim++;for(int j=0;j<G[i].size();++j){int k=G[i][j];if(dfn[k]==-1){Tarjan(k,i);low[i]=min(low[i],low[k]);}else if(Father!=k)/*假如k是i的父亲的话,那么这就是无向边中的重边,有重边那么一定不是桥*/low[i]=min(low[i],dfn[k]);//dfn[k]可能!=low[k],所以不能用low[k]代替dfn[k],否则会上翻过头了。}
}
void count()
{int rootson=0;Tarjan(1,0);for(int i=2;i<=n;++i){int v=father[i];if(v==1)rootson++;/*统计根节点子树的个数,根节点的子树个数>=2,就是割点*/else{if(low[i]>=dfn[v])/*割点的条件*/is_cut[v]=true;}}if(rootson>1)is_cut[1]=true;for(int i=1;i<=n;++i)if(is_cut[i])printf("%d\n",i);for(int i=1;i<=n;++i){int v=father[i];if(v>0&&low[i]>dfn[v])/*桥的条件*/printf("%d,%d\n",v,i);}}
int main()
{input();memset(dfn,-1,sizeof(dfn));memset(father,0,sizeof(father));memset(low,-1,sizeof(low));memset(is_cut,false,sizeof(is_cut));count();return 0;
}
这篇关于tarjan算法——求无向图的割点和桥的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!