【Python】科研代码学习:十二 PEFT(高效参数的训练,Adapter适配器)

本文主要是介绍【Python】科研代码学习:十二 PEFT(高效参数的训练,Adapter适配器),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Python】科研代码学习:十二 PEFT

  • PEFT
    • 简单训练教程
    • 简单推理教程
    • Adapter 适配器
    • Merge Adapter
  • 架构关系

PEFT

  • 【HF官网-Doc-PEFT:API】
    首先日常问题,是什么,为什么,怎么用
    PEFT (Prameter-Efficient Fine-Tuning):参数高效的微调
    这里特指 HF 提供的 PEFT
    PEFT 让大的预训练模型可以很快适应到各种下游的任务中,并且没有进行全参微调,因为全参微调的时间、算力花费比较大。

简单训练教程

  • 两个很重要的模块:
    PeftConfig :提供 peft 的配置
    PeftModel:提供 peft 的模型
  • 最常见的是使用 LoRA (Low-Rank Adaptation ) 作为 PEFT 技术
    这里,PeftConfig 就使用了 LoraConfig
    然后给了一些必要的参数,比如任务类型,设定模式(训练还是推理),低秩矩阵的秩,和lora的俩参数:
from peft import LoraConfig, TaskTypepeft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1)
  • 然后,加载一个预训练模型
    接着,使用 get_peft_model,把模型和 peft_config 传进去,变成 peftmodel
    我们发现,这里只用训练 0.19 % 0.19\% 0.19% 的参数
from transformers import AutoModelForSeq2SeqLM
from peft import get_peft_modelmodel = AutoModelForSeq2SeqLM.from_pretrained("bigscience/mt0-large")model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
"output: trainable params: 2359296 || all params: 1231940608 || trainable%: 0.19151053100118282"
  • 然后直接提供 TrainingArgumentsTrainer 训练即可
training_args = TrainingArguments(output_dir="your-name/bigscience/mt0-large-lora",learning_rate=1e-3,per_device_train_batch_size=32,per_device_eval_batch_size=32,num_train_epochs=2,weight_decay=0.01,evaluation_strategy="epoch",save_strategy="epoch",load_best_model_at_end=True,
)trainer = Trainer(model=model,args=training_args,train_dataset=tokenized_datasets["train"],eval_dataset=tokenized_datasets["test"],tokenizer=tokenizer,data_collator=data_collator,compute_metrics=compute_metrics,
)trainer.train()	
  • 保存部分,跟一般的模型一样。但它只存储那些额外训练的参数,因此保存后的文件很小。
model.save_pretrained("output_dir")

简单推理教程

  • 我们加载 peftmodel 的话,需要使用比如 AutoPeftModel
    同理,使用 .from_pretrained 方法加载
    其他步骤没啥区别
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
import torchmodel = AutoPeftModelForCausalLM.from_pretrained("ybelkada/opt-350m-lora")
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")model = model.to("cuda")
model.eval()
inputs = tokenizer("Preheat the oven to 350 degrees and place the cookie dough", return_tensors="pt")outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=50)
print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0])"Preheat the oven to 350 degrees and place the cookie dough in the center of the oven. In a large bowl, combine the flour, baking powder, baking soda, salt, and cinnamon. In a separate bowl, combine the egg yolks, sugar, and vanilla."

Adapter 适配器

  • Adapter-based 方法在冻结的注意力层和全连接层之后添加了额外的可训练参数
    这里简单介绍一下 PEFT 支持的几个 Adapter
  • LoRA (Low-Rank Adaptation):最受欢迎的一个PEFT方法
    主要是高秩到低秩的映射,然后再映射回高秩矩阵。
    一开始在NLP中,后来CV也有用
  • LoHa (Low-Rank Hadamard Product):使用了 Hadamard product 方法
    在CV中用,NLP中的嵌入层代码还没实现
  • LoKr (Low-Rankd Kronecker Product) :使用了 Kronecker Product 方法
    主要给 diffusion model 使用
    在这里插入图片描述
  • OFT (Orthogonal Finetuning):方法如下图
    一开始聚焦在微调阶段,预训练模型的生成能力
    在这里插入图片描述
  • Llama-Adapter:让 Llama 适配成接受指令模型 (instruction-following model)
    在这里插入图片描述
  • PEFT 库中,可以按照对应的模型和任务,选择想用的 Adapter
    不同的 Adapter 都有它自己的 SpecificPeftModelSpecificPeftConfig
    去查阅相关的参数即可。
    比较常用的有:
    IA3
    LoRA
    P-tuning
    Prefix tuning
    Prompt tuning
    在这里插入图片描述

Merge Adapter

  • 在实际过程中,由于基座模型和 adapter 适配器 分开加载,可能会遇到延迟问题
    这个时候,可以选择使用 merge_and_unload() 方法,把 adapter 权重与底座模型权重融合起来。这样的话,使用新的模型就和一开始单独的模型没有区别了。
  • 比如我使用的是 LoraAdapter,查阅该方法
    progressbar :是否显示进度条
    safe_merge:使用安全合并,检查适配器中是否有 Nan 权重
    adapter_names:要合并的适配器名字的列表
    在这里插入图片描述
  • 当然这些参数都可以用默认值。我们只要对 PeftModel 调用该方法即可返回合并后的 model 。
from transformers import AutoModelForCausalLM
from peft import PeftModelbase_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b")
peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample"
model = PeftModel.from_pretrained(base_model, peft_model_id)
merged_model = model.merge_and_unload()

架构关系

  • 粗看上面关系有点乱,还是得看一下源码
    PeftModel 是从 torch.nn 继承过来的,按照不同的任务,使用不同的子类,比如 PeftModelForCausalLM
    LoRAModel 等,是从 BaseTuner 继承过来的,Tuner 也是继承自 torch.nn,但这个是按照使用不同的适配器分类的,并且它建议是使用 LoRAConfig,这个是 PeftConfig 的子类
  • PeftModel 更靠近 PretrainedModel,有 save_pretrained, from_pretrained 等方法。PeftModelForCausalLM 还有 generate 方法
    LoRAModel 更靠近 Adapter,有 merge_and_unload, delete_adapter 等方法
  • 它里面大部分的基类和使用到的网络几乎都是 torch.nn,因此大部分跟 PretrainedModel 可以接壤
  • 即根据我的查询,LoRAModel 等并不是 PeftModelForCausalLM / PeftModel 的子类(有待存疑)
    LoRAModel 来训练,PeftModel 来推理,是可以的。
    并且 LoRAModel 可以通过 merge_and_unload() 方法转成 torch.nn,也就相当于 PretrainedModel
    在这里插入图片描述

这篇关于【Python】科研代码学习:十二 PEFT(高效参数的训练,Adapter适配器)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/809726

相关文章

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import