算法打卡day17|二叉树篇06|654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树

本文主要是介绍算法打卡day17|二叉树篇06|654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法题

Leetcode  654.最大二叉树

题目链接:654.最大二叉树

大佬视频讲解:最大二叉树视频讲解

个人思路

大概思路就是在数组中 找最大值的节点作为当前节点,用最大值的index切割左右子树的区间,往复循环到数组元素为0;

解法

递归法

按照思路来看递归法是不错的选择;可以采用前序遍历,因为是先构造中间节点,然后递归构造左子树和右子树

 1.确定递归函数的参数和返回值参数

传入的是存放元素的数组返回该数组构造的二叉树的头结点,返回类型是指向节点的指针。

2.确定终止条件

题目中说了输入的数组大小一定是大于等于1的,所以不用考虑小于1的情况,那么当递归遍历的时候,如果传入的数组大小为1,说明遍历到了叶子节点了。

那么应该定义一个新的节点,并把这个数组的数值赋给新的节点,然后返回这个节点。 这表示一个数组大小是1的时候,构造了一个新的节点,并返回。

 3.确定单层递归的逻辑

 1.先要找到数组中最大的值和对应的下标最大的值构造根节点,下标用来下一步分割数组

 2.最大值所在的下标左区间 构造左子树

这里要判断maxValueIndex > 0,因为要保证左区间至少有一个数值

 3.最大值所在的下标右区间 构造右子树

判断maxValueIndex < (nums.size() - 1),确保右区间至少有一个数值

class Solution {public TreeNode constructMaximumBinaryTree(int[] nums) {return constructMaximumBinaryTree1(nums, 0, nums.length);}public TreeNode constructMaximumBinaryTree1(int[] nums, int leftIndex, int rightIndex) {if (rightIndex - leftIndex < 1) {// 遍历完数组时返回空return null;}if (rightIndex - leftIndex == 1) {// 只有一个元素return new TreeNode(nums[leftIndex]);}int maxIndex = leftIndex;// 最大值所在位置int maxVal = nums[maxIndex];// 最大值for (int i = leftIndex + 1; i < rightIndex; i++) {//遍历找最大值和节点位置if (nums[i] > maxVal){maxVal = nums[i];maxIndex = i;}}TreeNode root = new TreeNode(maxVal);//最大值作为当前节点// 根据maxIndex划分左右子树root.left = constructMaximumBinaryTree1(nums, leftIndex, maxIndex);root.right = constructMaximumBinaryTree1(nums, maxIndex + 1, rightIndex);return root;}
}

时间复杂度:O(n);(遍历整棵树,每个元素最多被访问一次)

空间复杂度:O(n);(递归树的高度h)


Leetcode 617.合并二叉树

题目链接:617.合并二叉树

大佬视频讲解:合并二叉树视频讲解

个人思路

这个和构造一颗二叉树差不多,只是需要同时操控两棵树,所以只用同时遍历两棵二叉树,把树A和树B的节点值相加到树A,最后返回树A即可;

解法
递归法

class Solution {public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {if (root1 == null) return root2;//2.确定终止条件if (root2 == null) return root1;//3.确定单层递归的逻辑root1.val += root2.val;//两颗数节点值相加root1.left = mergeTrees(root1.left,root2.left);//左树合并root1.right = mergeTrees(root1.right,root2.right);//右树合并return root1;//1.确定递归函数的参数和返回类型}
}

时间复杂度:O(n);(最差遍历一遍树)

空间复杂度:O(n);(递归树的高度h)

迭代法

也可以用队列,模拟的层序遍历,同时遍历,将值加到一棵树上,最后返回这棵树;

class Solution {public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {if (root1 == null) return root2;if (root2 ==null) return root1;Queue<TreeNode> queue = new LinkedList<>();queue.offer(root1);queue.offer(root2);while (!queue.isEmpty()) {TreeNode node1 = queue.poll();TreeNode node2 = queue.poll();// 此时两个节点一定不为空,val相加node1.val = node1.val + node2.val;// 如果两棵树左节点都不为空,加入队列if (node1.left != null && node2.left != null) {queue.offer(node1.left);queue.offer(node2.left);}// 如果两棵树右节点都不为空,加入队列if (node1.right != null && node2.right != null) {queue.offer(node1.right);queue.offer(node2.right);}// 若node1的左节点为空,直接赋值if (node1.left == null && node2.left != null) {node1.left = node2.left;}// 若node1的右节点为空,直接赋值if (node1.right == null && node2.right != null) {node1.right = node2.right;}}return root1;}
}

时间复杂度:O(n);(遍历2棵树)

空间复杂度:O(n);(使用两个队列)


Leetcode 700.二叉搜索树中的搜索

题目链接:700.二叉搜索树中的搜索

 大佬视频讲解:二叉搜索树中的搜索视频讲解

个人思路

对于普通二叉树和搜素树都能递归法,一层层找,找到节点值与目标值相同时,返回该节点。

解法

回顾一下二叉搜索树,它是一个有序树:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉搜索树

递归法

可以根据二叉搜索树的特性(left<root, right>root),优化一下递归

class Solution {public TreeNode searchBST(TreeNode root, int val) {if (root == null || root.val == val) {//终止条件return root;//返回参数}//递归逻辑if (val < root.val) {return searchBST(root.left, val);//往左搜索} else {return searchBST(root.right, val);//往右搜索}}
}

递归搜索普通二叉树的代码如下:

class Solution {// 递归,普通二叉树public TreeNode searchBST(TreeNode root, int val) {if (root == null || root.val == val) {return root;}TreeNode left = searchBST(root.left, val);if (left != null) {return left;}return searchBST(root.right, val);}
}

时间复杂度:O(n);(最差遍历一遍树)

空间复杂度:O(n);(递归树的高度h)

迭代法

因为二叉搜索树的特殊性,也就是节点的有序性,可以不使用辅助栈或者队列就可以写出迭代法。

对于一般二叉树,递归过程中还有回溯的过程,例如走一个左方向的分支走到头了,那么要调头,在走右分支。而对于二叉搜索树,不需要回溯的过程,因为节点的有序性就帮我们确定了搜索的方向。

例如要搜索元素为11的节点,不需要搜索其他节点,也不需要做回溯,查找的路径已经规划好了。中间节点如果大于11就向左走,如果小于11就向右走,如图:

class Solution {public TreeNode searchBST(TreeNode root, int val) {//不用栈也能模拟递归while (root != null)if (val < root.val) root = root.left;else if (val > root.val) root = root.right;else return root;return null;}
}

时间复杂度:O(n);(遍历整棵树)

空间复杂度:O(1);(没有使用其他辅助空间)

迭代搜索普通二叉树代码如下:

class Solution {// 迭代,普通二叉树public TreeNode searchBST(TreeNode root, int val) {if (root == null || root.val == val) {return root;}Stack<TreeNode> stack = new Stack<>();stack.push(root);while (!stack.isEmpty()) {TreeNode pop = stack.pop();if (pop.val == val) {return pop;}if (pop.right != null) {stack.push(pop.right);}if (pop.left != null) {stack.push(pop.left);}}return null;}
}

时间复杂度:O(n);(遍历整棵树)

空间复杂度:O(n);(使用栈模拟递归)


Leetcode 98.验证二叉搜索树

题目链接:98.验证二叉搜索树

大佬视频讲解:验证二叉搜索树视频讲解

个人思路

刚刚做完搜索树,但如何验证搜索树的思路却不清晰...

解法
递归法

首先这道题目比较容易犯个错误:

不能单纯的比较左节点小于中间节点,右节点大于中间节点

因为搜索树要比较的是 左子树所有节点小于中间节点,右子树所有节点大于中间节点

例如: [10,5,15,null,null,6,20] 这个case:

节点10大于左节点5,小于右节点15,但右子树里出现了一个6 这就不符合了!

然后继续递归三步走,这里采用中序遍历,因为要先知道根节点的值,再去比较左右子节点:

1.确定递归函数,返回值以及参数

如果没有找到这个节点就遍历了整个树,如果找到不符合的节点了,立刻返回。

2.确定终止条件

如果是空节点 也是二叉搜索树

3.确定单层递归的逻辑

中序遍历,一直更新maxVal,一旦发现maxVal >= root->val,就返回false,注意元素相同时候也要返回false。

class Solution {TreeNode max;public boolean isValidBST(TreeNode root) {if (root == null) {return true;}// 左boolean left = isValidBST(root.left);if (!left) {return false;}// 中if (max != null && root.val <= max.val) {return false;}max = root;// 右boolean right = isValidBST(root.right);return right;}
}

时间复杂度:O(n);(遍历二叉树)

空间复杂度:O(n);(递归树的高度h)

迭代法

可以用栈模拟递归中序遍历;

class Solution {  public boolean isValidBST(TreeNode root) {if (root == null) {return true;}Stack<TreeNode> stack = new Stack<>();TreeNode pre = null;while (root != null || !stack.isEmpty()) {while (root != null) {stack.push(root);root = root.left;// 左}// 中,处理节点,判断大小TreeNode pop = stack.pop();if (pre != null && pop.val <= pre.val) {return false;}pre = pop;root = pop.right;// 右}return true;}
}

时间复杂度:O(n);(遍历二叉树)

空间复杂度:O(n);(模拟递归的栈)


以上是个人的思考反思与总结,若只想根据系列题刷,参考卡哥的网址代码随想录算法官网

这篇关于算法打卡day17|二叉树篇06|654.最大二叉树、617.合并二叉树、700.二叉搜索树中的搜索、98.验证二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/809278

相关文章

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

在C#中合并和解析相对路径方式

《在C#中合并和解析相对路径方式》Path类提供了几个用于操作文件路径的静态方法,其中包括Combine方法和GetFullPath方法,Combine方法将两个路径合并在一起,但不会解析包含相对元素... 目录C#合并和解析相对路径System.IO.Path类幸运的是总结C#合并和解析相对路径对于 C

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

C# ComboBox下拉框实现搜索方式

《C#ComboBox下拉框实现搜索方式》文章介绍了如何在加载窗口时实现一个功能,并在ComboBox下拉框中添加键盘事件以实现搜索功能,由于数据不方便公开,作者表示理解并希望得到大家的指教... 目录C# ComboBox下拉框实现搜索步骤一步骤二步骤三总结C# ComboBox下拉框实现搜索步骤一这

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个