算法时空复杂度分析:大O表示法

2024-03-14 17:44

本文主要是介绍算法时空复杂度分析:大O表示法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 大O表示法
  • 3个时间复杂度分析原则
  • 常见的时间复杂度量级
  • 空间复杂度
  • 参考资料

前言

算法题写完以后,面试官经常会追问一下你这个算法的时空复杂度是多少?(好像作为一名算法工程师,我日常码代码的过程中,并没有太注意这个,惭愧~但是找做后端开发的男票求证了一下,他们日常工作确实会去考虑这种问题)那么无论是为了应付面试,还是为了未来码代码可以精益求精,都还是认真的学一下时空复杂度分析方法吧!

对于为什么需要时空复杂度分析,而不是直接跑一下代码看看,看到王争大佬在《数据结构与算法之美》(墙推)里给的两个原因是:

  1. 测试结果依赖测试环境:机器的配置会十分影响你跑出的结果;
  2. 测试结果依赖数据规模的大小。

因此,我们需要一个不依赖数据规模和测试环境,帮助粗略估计算法执行效率的方法!也就是下面的大O表示法~

大O表示法

举个栗子🌰,下面这个函数的总的执行时间 T ( n ) = 1 + 2 n T(n) = 1+2n T(n)=1+2n个unit time!

def f(n: int)a = 0  # 1个unit timefor i in range(n):  # n个unit timea += i  # n个unit timereturn a

再举个栗子🌰,下面这个函数的总的执行时间 T ( n ) = 1 + n + 2 n 2 T(n) = 1+n+2n^2 T(n)=1+n+2n2个unit time!

def g(n: int, m: int)a = 0  # 1个unit timefor i in range(n):  # n个unit timefor j in range(n): # n^2个unit timea += i*j  # n^2个unit timereturn a

用一个公式表示就是:
在这里插入图片描述
其中:

  • T ( n ) T(n) T(n)表示代码执行的时间;
  • n n n:表示数据规模的大小;
  • f ( n ) f(n) f(n):表示每行代码执行的次数总和
  • O O O:表示执行时间 T ( n ) T(n) T(n) f ( n ) f(n) f(n)成正比。

所以第一个例子的时间复杂度为 T ( n ) = 1 + 2 n T(n) = 1+2n T(n)=1+2n,第二个例子的时间复杂度为 T ( n ) = 1 + n + 2 n 2 T(n) = 1+n+2n^2 T(n)=1+n+2n2,这就是大O时间复杂度表示法。大O时间复杂度表示法实际上并不是具体值代码执行的时间,而是代表代码执行时间随着数据规模增长的变化趋势,所以也叫渐进时间复杂度,简称时间复杂度。

当n很大时,公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略,只需要记录一个最大量级即可!因此,上例的时间复杂度可以记为: T ( n ) = O ( n ) T(n) = O(n) T(n)=O(n) T ( n ) = O ( n 2 ) T(n) = O(n^2) T(n)=O(n2)

3个时间复杂度分析原则

3个原则:

1. 只关注循环执行次数最多的一段代码:
还是上面第一个例子,关注for循环这段代码就行了,a = 0这类代码都是常量级的执行时间,与 n n n无关。

def f(n: int)a = 0  # 1个unit timefor i in range(n):  # n个unit timea += i  # n个unit timereturn a

2. 总复杂度 = 量级最大的那段代码的复杂度:
这个有点像运筹学里关键路径法的思想,只有找到了最关键/量级最大的,你去优化的时候才能发力在刀刃上~

比如下面这段代码,有一层for循环的,有两层for循环,我们去关注两层for循环的这段代码即可。

def g(n: int, m: int)for i in range(n):passa = 0  # 1个unit timefor i in range(n):  # n个unit timefor j in range(n): # n^2个unit timea += i*j  # n^2个unit timereturn a

3. 嵌套代码的复杂度 = 嵌套内外代码复杂度的乘积:
上面的第二个例子,两层for循环嵌套,最后的时间复杂度 = 外层for循环的复杂度乘以里面for循环的复杂度。

def g(n: int, m: int)a = 0  # 1个unit timefor i in range(n):  # n个unit timefor j in range(n): # n^2个unit timea += i*j  # n^2个unit timereturn a

常见的时间复杂度量级

  • 多项式量级:下图左侧;
  • 非多项式量级:下图右侧波浪线。执行时间会随着数据规模的增大而急剧增大,是非常低效的算法

在这里插入图片描述
在这里插入图片描述

空间复杂度

又称为渐进空间复杂度,表示算法的存储空间与数据规模之间的增长关系!

举个栗子🌰,空间复杂度为 O ( n ) O(n) O(n)

def f(n: int):a = 2  # 1个空间存储变量,常量b = [] # 从下面代码可以看出时一个大小为n的数组for i in range(n):b.append(i)return b

参考资料

  1. 《数据结构与算法之美》王争

这篇关于算法时空复杂度分析:大O表示法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/809192

相关文章

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.