RCG:何恺明新作,无条件图像生成新SOTA

2024-03-14 17:10

本文主要是介绍RCG:何恺明新作,无条件图像生成新SOTA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

丰色 发自 凹非寺量子位 | 公众号 QbitAI

大佬何恺明还未正式入职MIT,但和MIT的第一篇合作研究已经出来了:

他和MIT师生一起开发了一个自条件图像生成框架,名叫RCG(代码已开源)。

这个框架结构非常简单但效果拔群,直接在ImageNet-1K数据集上实现了无条件图像生成的新SOTA

5a253ff2f8412b3f667f55f2b9b6762b.png

它生成的图像不需要任何人类注释(也就是提示词、类标签什么的),就能做到既保真又具有多样性。

0749d8ca61b6924e3d9f41dd4827a00e.png

这样的它不仅显著提高了无条件图像生成的水平,还能跟当前最好的条件生成方法一较高下。

用何恺明团队自己的话来说:

有条件和无条件生成任务之间长期存在的性能差距,终于在这一刻被弥补了。

那么,它究竟是如何做到的呢?

类似自监督学习的自条件生成

首先,所谓无条件生成,就是模型在没有输入信号帮助的情况下直接捕获数据分布生成内容。

这种方式比较难以训练,所以一直和条件生成有很大性能差距——就像无监督学习比不过监督学习一样。

但就像自监督学习的出现,扭转了这一局面一样。

在无条件图像生成领域,也有一个类似于自监督学习概念的自条件生成方法。

相比传统的无条件生成简单地将噪声分布映射到图像分布,这种方法主要将像素生成过程设置在从数据分布本身导出的表示分布上

它有望超越条件图像生成,并推动诸如分子设计或药物发现这种不需要人类给注释的应用往前发展(这也是为什么条件生成图像发展得这么好,我们还要重视无条件生成)。

现在,基于这个自条件生成概念,何恺明团队首先开发了一个表示扩散模型RDM

它主要用于生成低维自监督图像表示,方法是通过自监督图像编码器从图像中截取:

81101fc763b8e9cd474fc792f447ada4.png

它的核心架构如下:

首先是输入层,它负责将表征投射到隐藏维度C,接着是N个全连接块,最后是一个输出层,负责把隐藏层的潜在特征重新投射(转换)到原始表征维度。

其中每一层都包含一个LayerNorm层、一个SiLU层以及一个线性层。

af5ed1f3a30d456c70734bf63ca7ea90.png

这样的RDM具有两个优点:

一是多样性强,二是计算开销小。

接着,利用RDM,团队就提出了今天的主角:表示条件图像生成架构RCG。

它是一个简单的自条件生成框架,由三个组件组成:

一个是SSL图像编码器,用于将图像分布转换为紧凑的表示分布。

一个是RDM,用于对该分布进行建模和采样。

最后是一个像素生成器MAGE,用于根据表示来处理图像像。

MAGE的工作方式主要是向token化的图像中添加随机掩码,并要求网络以从同一图像中提取的表示为条件来重建丢失的token。

7f4420c5829c683c9c1ffc7e76c3469c.png

最终,测试表明,这个自条件生成框架虽结构简单但效果非凡:

在ImageNet 256×256上,RCG实现了3.56的FID和186.9的IS(Inception Score)得分。

相比之下,在它之前最厉害的无条件生成方法FID分数为7.04,IS得分为123.5。

a70e09c5acd84e5605eb56185b624021.png

以及,相比条件生成,RCG也丝毫不逊色,可以达到相当甚至超过该领域基准模型的水平。

最后,在无分类器引导的情况下,RCG的成绩还能进一步提高到3.31(FID)和253.4(IS)。

团队表示:

这些结果表明,自条件图像生成模型拥有巨大潜力,可能预示这一领域新时代的到来。

团队介绍

本文一共三位作者:

2de4f90e48854d48cdf45502f84c1cf8.png

一作是MIT博士生黎天鸿,本科毕业于清华姚班,研究方向为跨模态集成传感技术。

他的主页很有意思,还专门放了一个菜谱合集——做研究和做饭是他最热爱的两件事。

bf9fff66f4e9f6408e10355cff67175f.png

另一位作者是MIT电气工程与计算机科学系(EECS)教授、MIT无线网络和移动计算中心主任Dina Katabi,她是今年斯隆奖的获得者,并已当选美国国家科学院院士。

5ec7865db112d70e123134d686819b6c.png

最后,通讯作者为何恺明,他将在明年正式回归学界、离开Meta加入MIT电气工程和计算机科学系,与Dina Katabi成为同事。

80cbcee15ec7d6c76c839a08b99d7ccc.png

论文地址:
https://arxiv.org/abs/2312.03701

关注公众号【机器学习与AI生成创作】,更多精彩等你来读

卧剿,6万字!30个方向130篇!CVPR 2023 最全 AIGC 论文!一口气读完

深入浅出stable diffusion:AI作画技术背后的潜在扩散模型论文解读

深入浅出ControlNet,一种可控生成的AIGC绘画生成算法! 

经典GAN不得不读:StyleGAN

66320f2f86b44a3c60cd7bbcc56b8284.png 戳我,查看GAN的系列专辑~!

一杯奶茶,成为AIGC+CV视觉的前沿弄潮儿!

最新最全100篇汇总!生成扩散模型Diffusion Models

ECCV2022 | 生成对抗网络GAN部分论文汇总

CVPR 2022 | 25+方向、最新50篇GAN论文

 ICCV 2021 | 35个主题GAN论文汇总

超110篇!CVPR 2021最全GAN论文梳理

超100篇!CVPR 2020最全GAN论文梳理

拆解组新的GAN:解耦表征MixNMatch

StarGAN第2版:多域多样性图像生成

附下载 | 《可解释的机器学习》中文版

附下载 |《TensorFlow 2.0 深度学习算法实战》

附下载 |《计算机视觉中的数学方法》分享

《基于深度学习的表面缺陷检测方法综述》

《零样本图像分类综述: 十年进展》

《基于深度神经网络的少样本学习综述》

《礼记·学记》有云:独学而无友,则孤陋而寡闻

点击一杯奶茶,成为AIGC+CV视觉的前沿弄潮儿!,加入 AI生成创作与计算机视觉 知识星球!

这篇关于RCG:何恺明新作,无条件图像生成新SOTA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/809112

相关文章

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre