5. 数理统计---极大似然估计

2024-03-14 16:18

本文主要是介绍5. 数理统计---极大似然估计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里写自定义目录标题

  • 5.极大似然估计
    • 5.1 似然函数定义
    • 5.2 极大似然估计定义
    • 5.3 极大似然估计求解的一般过程
    • 5.4 极大似然估计的不变性

5.极大似然估计

Fisher的极大似然思想: 随机试验有多个可能结果, 但在一次实验中, 有且只有一个结果会出现. 如果在某次实验中, 结果 ω \omega ω出现了, 则认为该结果(事件{ ω \omega ω})发生的概率 P { ω } P\{\omega\} P{ω}最大.

假设总体 X X X是离散随机变量, 其分布律为:
P { X = a k } = p k ( θ ) ( k = 1 , 2 , . . . ) P\{X=a_k\}=p_k(\theta)(k=1, 2, ...) P{X=ak}=pk(θ)(k=1,2,...)
其中 θ ( θ ∈ Θ ) \theta(\theta\in \Theta) θ(θΘ)是未知参数.
X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn是来自总体 X X X的样本, x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn是样本的观测值. 即事件 { X 1 = x 1 , X 2 = x 2 , . . . , X n = x n } \{X_1=x_1, X_2=x_2, ..., X_n=x_n\} {X1=x1,X2=x2,...,Xn=xn}发生了.
由Fisher的极大似然思想可以得到, 概率: P { X 1 = x 1 , X 2 = x 2 , . . . , X n = x n } P\{X_1=x_1, X_2=x_2, ..., X_n=x_n\} P{X1=x1,X2=x2,...,Xn=xn}最大.

P { X 1 = x 1 , X 2 = x 2 , . . . , X n = x n } = P { X 1 = x 1 } P { X 2 = x 2 } ⋯ P { X n = x n } = P { X = x 1 } P { X = x 2 } ⋯ P { X = x n } = L ( θ ) \begin{aligned} &P\{X_1=x_1, X_2=x_2, ..., X_n=x_n\}\\ &=P\{X_1=x_1\}P\{X_2=x_2\}\cdots P\{X_n=x_n\}\\ &=P\{X=x_1\}P\{X=x_2\}\cdots P\{X=x_n\}=L(\theta) \end{aligned} P{X1=x1,X2=x2,...,Xn=xn}=P{X1=x1}P{X2=x2}P{Xn=xn}=P{X=x1}P{X=x2}P{X=xn}=L(θ)

5.1 似然函数定义

定义1:
X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn是来自总体 X X X的样本, x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn是样本的观测值.

  1. 若X是离散型总体, 其分布律为:
    P { X = a k } = p k ( θ ) ( k = 1 , 2 , . . . ) P\{X=a_k\}=p_k(\theta)\\(k=1,2,...) P{X=ak}=pk(θ)(k=1,2,...)
    L ( θ ) = L ( θ ; x 1 , x 2 , . . . , x n ) = ∏ i = 1 n P { X i = x i } , θ ∈ Θ L(\theta)=L(\theta; x_1,x_2,...,x_n)=\prod_{i=1}^{n}P\{X_i=x_i\}, \theta\in \Theta L(θ)=L(θ;x1,x2,...,xn)=i=1nP{Xi=xi},θΘ
  2. 若X是连续型总体, 其密度为 f ( x ; θ ) f(x;\theta) f(x;θ).
    L ( θ ) = L ( θ ; x 1 , x 2 , . . . , x n ) = ∏ i = 1 n f ( x i ; θ ) , θ ∈ Θ L(\theta)=L(\theta; x_1,x_2,...,x_n)=\prod_{i=1}^{n}f(x_i;\theta), \theta\in \Theta L(θ)=L(θ;x1,x2,...,xn)=i=1nf(xi;θ),θΘ
    L ( θ ) L(\theta) L(θ)似然函数

例子1: 设 X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn是来自总体 X ∼ B ( 1 , p ) X\sim B(1,p) XB(1,p)的样本, x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn是样本的观测值. p p p是未知参数. 试写出似然函数.
解: P { X = x } = p x ( 1 − p ) 1 − x P\{X=x\}=p^x(1-p)^{1-x} P{X=x}=px(1p)1x其中 x ∈ { 0 , 1 } x\in \{0,1\} x{0,1}
L ( p ) = ∏ i = 1 n P { X i = x i } = ∏ i = 1 n p x i ( 1 − p ) 1 − x i = p n x ˉ ( 1 − p ) n ( 1 − x ˉ ) \begin{aligned} L(p)&=\prod_{i=1}^nP\{X_i=x_i\}\\ &=\prod_{i=1}^np^{x_i}(1-p)^{1-x_i}\\ &=p^{n\bar x}(1-p)^{n(1-\bar x)} \end{aligned} L(p)=i=1nP{Xi=xi}=i=1npxi(1p)1xi=pnxˉ(1p)n(1xˉ)

例子2: 设 X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn是来自总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)的样本, x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn是样本的观测值. μ , σ 2 \mu,\sigma^2 μ,σ2是未知参数. 试写出似然函数.
**解:**正态分布的密度函数 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2
则似然函数可以写为:
L ( μ , σ 2 ) = ∏ i = 1 n f ( x i ) = ∏ i = 1 n 1 2 π σ e − ( x i − μ ) 2 2 σ 2 = ( 1 2 π ) n ( σ 2 ) − n 2 e − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \begin{aligned} L(\mu,\sigma^2)&=\prod_{i=1}^nf(x_i)\\ &=\prod_{i=1}^n\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}\\ &=(\frac{1}{\sqrt{2\pi}})^n(\sigma^2)^{-\frac{n}{2}}e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2} \end{aligned} L(μ,σ2)=i=1nf(xi)=i=1n2π σ1e2σ2(xiμ)2=(2π 1)n(σ2)2ne2σ21i=1n(xiμ)2

5.2 极大似然估计定义

定义2
X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn是来自总体 X X X的样本, x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn是样本的观测值. L ( θ ) ( θ ∈ Θ ) L(\theta)(\theta\in\Theta) L(θ)(θΘ)是似然函数. 若存在统计量 θ ^ = θ ^ ( x 1 , x 2 , ⋯ , x n ) \hat \theta=\hat\theta(x_1,x_2,\cdots,x_n) θ^=θ^(x1,x2,,xn)使得:
L ( θ ^ ) = sup ⁡ θ ∈ Θ L ( θ ) L(\hat\theta)=\sup_{\theta\in\Theta}L(\theta) L(θ^)=θΘsupL(θ)
则称 θ ^ = θ ^ ( X 1 , X 2 , ⋯ , X n ) \hat \theta=\hat\theta(X_1,X_2,\cdots,X_n) θ^=θ^(X1,X2,,Xn) θ \theta θ极大似然估计量, 简记为MLE(Maximum Likehood Estimate)

5.3 极大似然估计求解的一般过程

  1. 根据总体分布的表达式, 写出似然函数:
    L ( θ 1 , θ 2 , ⋯ , θ m ) ( θ = ( θ 1 , θ 2 , ⋯ , θ m ) ∈ Θ ) L(\theta_1,\theta_2,\cdots,\theta_m)\qquad(\theta=(\theta_1,\theta_2,\cdots,\theta_m)\in\Theta) L(θ1,θ2,,θm)(θ=(θ1,θ2,,θm)Θ)
  2. 因为 L ( θ 1 , θ 2 , ⋯ , θ m ) L(\theta_1,\theta_2,\cdots,\theta_m) L(θ1,θ2,,θm) ln ⁡ L ( θ 1 , θ 2 , ⋯ , θ m ) \ln L(\theta_1,\theta_2,\cdots,\theta_m) lnL(θ1,θ2,,θm)有相同的极值点, 称 ln ⁡ L ( θ 1 , θ 2 , ⋯ , θ m ) \ln L(\theta_1,\theta_2,\cdots,\theta_m) lnL(θ1,θ2,,θm)对数似然函数, 记为 l ( θ 1 , θ 2 , ⋯ , θ m ) l(\theta_1,\theta_2,\cdots,\theta_m) l(θ1,θ2,,θm). 求出 l ( θ 1 , θ 2 , ⋯ , θ m ) l(\theta_1,\theta_2,\cdots,\theta_m) l(θ1,θ2,,θm)
  3. 求出 l ( θ 1 , θ 2 , ⋯ , θ m ) l(\theta_1,\theta_2,\cdots,\theta_m) l(θ1,θ2,,θm)的极大值点 θ ^ 1 , θ ^ 2 , ⋯ , θ ^ n \hat \theta_1,\hat \theta_2,\cdots,\hat \theta_n θ^1,θ^2,,θ^n, 即为 θ 1 , θ 2 , ⋯ , θ m \theta_1,\theta_2,\cdots,\theta_m θ1,θ2,,θm的MLE

说明:
l ( θ 1 , θ 2 , ⋯ , θ m ) l(\theta_1,\theta_2,\cdots,\theta_m) l(θ1,θ2,,θm)关于 θ i ( i = 1 , 2 , ⋯ , m ) \theta_i(i=1,2,\cdots,m) θi(i=1,2,,m)可导, 则称:
{ ∂ l ( θ 1 , θ 2 , ⋯ , θ m ) ∂ θ i = 0 ∂ l ( θ 1 , θ 2 , ⋯ , θ m ) ∂ θ i = 0 ⋮ ∂ l ( θ 1 , θ 2 , ⋯ , θ m ) ∂ θ i = 0 \left\{\begin{aligned} &\frac{\partial l(\theta_1,\theta_2,\cdots,\theta_m)}{\partial \theta_i}=0\\ &\frac{\partial l(\theta_1,\theta_2,\cdots,\theta_m)}{\partial \theta_i}=0\\ &\vdots\\ &\frac{\partial l(\theta_1,\theta_2,\cdots,\theta_m)}{\partial \theta_i}=0 \end{aligned} \right. θil(θ1,θ2,,θm)=0θil(θ1,θ2,,θm)=0θil(θ1,θ2,,θm)=0
对数似然方程组.

例子3: 设 X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn是来自总体 X ∼ B ( 1 , p ) X\sim B(1,p) XB(1,p)的样本, x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn是样本的观测值. p p p是未知参数. 试写出极大似然估计.
解: P { X = x } = p x ( 1 − p ) 1 − x P\{X=x\}=p^x(1-p)^{1-x} P{X=x}=px(1p)1x其中 x ∈ { 0 , 1 } x\in \{0,1\} x{0,1}
L ( p ) = ∏ i = 1 n P { X i = x i } = ∏ i = 1 n p x i ( 1 − p ) 1 − x i = p n x ˉ ( 1 − p ) n ( 1 − x ˉ ) \begin{aligned} L(p)&=\prod_{i=1}^nP\{X_i=x_i\}\\ &=\prod_{i=1}^np^{x_i}(1-p)^{1-x_i}\\ &=p^{n\bar x}(1-p)^{n(1-\bar x)} \end{aligned} L(p)=i=1nP{Xi=xi}=i=1npxi(1p)1xi=pnxˉ(1p)n(1xˉ)
则对数似然函数为:
l ( p ) = ln ⁡ L ( p ) = n x ˉ ln ⁡ p + n ( 1 − x ˉ ) ln ⁡ ( 1 − p ) l(p)=\ln L(p)=n\bar x\ln p+n(1-\bar x)\ln(1-p) l(p)=lnL(p)=nxˉlnp+n(1xˉ)ln(1p)
l ( p ) l(p) l(p)求导:
d l ( p ) d p = n x ˉ 1 p − n ( 1 − x ˉ ) 1 1 − p = 0 ⇒ n x ˉ ( 1 − p ) − n ( 1 − x ˉ ) p = 0 ⇒ n x ˉ − n p = 0 ⇒ p ^ = x ˉ \begin{aligned} \frac{dl(p)}{dp}&=n\bar x\frac{1}{p}-n(1-\bar x)\frac{1}{1-p}=0\\ &\Rightarrow n\bar x(1-p)-n(1-\bar x)p=0\\ &\Rightarrow n\bar x-np=0\\ &\Rightarrow \hat p=\bar x \end{aligned} dpdl(p)=nxˉp1n(1xˉ)1p1=0nxˉ(1p)n(1xˉ)p=0nxˉnp=0p^=xˉ

例子4: 设 X 1 , X 2 , . . . , X n X_1, X_2, ..., X_n X1,X2,...,Xn是来自总体 X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)的样本, x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn是样本的观测值. μ , σ 2 \mu,\sigma^2 μ,σ2是未知参数. 试写出似然函数.
**解:**正态分布的密度函数 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e2σ2(xμ)2
则似然函数可以写为:
L ( μ , σ 2 ) = ∏ i = 1 n f ( x i ) = ∏ i = 1 n 1 2 π σ e − ( x i − μ ) 2 2 σ 2 = ( 1 2 π ) n ( σ 2 ) − n 2 e − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 \begin{aligned} L(\mu,\sigma^2)&=\prod_{i=1}^nf(x_i)\\ &=\prod_{i=1}^n\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}\\ &=(\frac{1}{\sqrt{2\pi}})^n(\sigma^2)^{-\frac{n}{2}}e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2} \end{aligned} L(μ,σ2)=i=1nf(xi)=i=1n2π σ1e2σ2(xiμ)2=(2π 1)n(σ2)2ne2σ21i=1n(xiμ)2
则对数似然函数为:
l ( μ , σ 2 ) = − n 2 ln ⁡ 2 π − n 2 ln ⁡ σ 2 − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 l(\mu,\sigma^2)=-\frac{n}{2}\ln{2\pi}-\frac{n}{2}\ln \sigma^2-\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2 l(μ,σ2)=2nln2π2nlnσ22σ21i=1n(xiμ)2
求导可得:
∂ l ∂ μ = 1 σ 2 ∑ i = 1 n ( x i − μ ) = 0 ∂ l ∂ σ 2 = − n 2 σ 2 + 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 = 0 ⇒ μ ^ = 1 n ∑ i = 1 n x i = x ˉ ⇒ σ ^ 2 = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 \begin{aligned} \frac{\partial l}{ \partial \mu}&=\frac{1}{\sigma^2}\sum_{i=1}^{n}(x_i-\mu)=0\\ \frac{\partial l}{ \partial \sigma^2}&=-\frac{n}{2\sigma^2}+\frac{1}{2\sigma^4}\sum_{i=1}^{n}(x_i-\mu)^2=0\\ &\Rightarrow \hat \mu=\frac{1}{n}\sum_{i=1}^{n}x_i=\bar x\\ &\Rightarrow \hat \sigma^2=\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar x)^2 \end{aligned} μlσ2l=σ21i=1n(xiμ)=0=2σ2n+2σ41i=1n(xiμ)2=0μ^=n1i=1nxi=xˉσ^2=n1i=1n(xixˉ)2

5.4 极大似然估计的不变性

定理: θ ^ \hat \theta θ^ θ \theta θ的极大似然估计, u = u ( θ ) u=u(\theta) u=u(θ)是函数 θ \theta θ的函数, 且有单值反函数:
θ = θ ( u ) \theta=\theta(u) θ=θ(u)
u ( θ ^ ) u(\hat \theta) u(θ^)是u的极大似然估计

例子5: 假设袋中有黑球和白球, 其中白球所占比例为 p ( 0 < p < 1 ) p(0<p<1) p(0<p<1)未知. 每次有放回的从袋中随机摸取一个求出来观测其颜色后放回, 共摸了m个球, 其中白球的个数记为 X X X. 共重复了n次这样的试验, 得到样本观察值为 x 1 , x 2 , ⋯ , x n x_1, x_2, \cdots, x_n x1,x2,,xn, 试求:

  1. p p p的极大似然估计
  2. 袋中白球和黑球之比R的极大似然估计
    解:
    (1) 总体的分布为: X ∼ B ( m , p ) X\sim B(m,p) XB(m,p)
    所以似然函数为:
    L ( p ) = ∏ i = 1 n P { X i = x i } = ∏ i = 1 n ( m x i ) p x i ( 1 − p ) m − x i = p n x ˉ ( 1 − p ) n ( m − x ˉ ) ∏ i = 1 n ( m x i ) l ( p ) = ln ⁡ L ( p ) = n x ˉ ln ⁡ p + n ( m − x ˉ ) ( 1 − p ) + ln ⁡ ∏ i = 1 n ( m x i ) \begin{aligned} L(p)&=\prod_{i=1}^{n}P\{X_i=x_i\}=\prod_{i=1}^n\begin{pmatrix}m \\ x_i \\ \end{pmatrix}p^{x_i}(1-p)^{m-x_i}=p^{n\bar x}(1-p)^{n(m-\bar x)}\prod_{i=1}^n\begin{pmatrix}m \\ x_i \\ \end{pmatrix}\\ l(p)&=\ln L(p)=n\bar x\ln p+n(m-\bar x)(1-p)+\ln\prod_{i=1}^{n}\begin{pmatrix}m \\ x_i \\ \end{pmatrix} \end{aligned} L(p)l(p)=i=1nP{Xi=xi}=i=1n(mxi)pxi(1p)mxi=pnxˉ(1p)n(mxˉ)i=1n(mxi)=lnL(p)=nxˉlnp+n(mxˉ)(1p)+lni=1n(mxi)
    对于 l ( p ) l(p) l(p)求导, 可得到对数似然方程:
    d l ( p ) d p = n x ˉ p − n ( m − x ˉ ) 1 − p = 0 ⇒ p ^ = x ˉ m \begin{aligned} \frac{dl(p)}{dp}&=\frac{n\bar x}{p}-\frac{n(m-\bar x)}{1-p}=0\\ &\Rightarrow \hat p=\frac{\bar x}{m} \end{aligned} dpdl(p)=pnxˉ1pn(mxˉ)=0p^=mxˉ
    (2) 由极大似然估计的不变性可得:
    R = p 1 − p R=\frac{p}{1-p} R=1pp
    则:
    R = p ^ 1 − p ^ = x ˉ m − x ˉ R=\frac{\hat p}{1-\hat p}=\frac{\bar x}{m-\bar x} R=1p^p^=mxˉxˉ

问题: 矩估计是否有不变性?

这篇关于5. 数理统计---极大似然估计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/808961

相关文章

数据集 3DPW-开源户外三维人体建模-姿态估计-人体关键点-人体mesh建模 >> DataBall

3DPW 3DPW-开源户外三维人体建模数据集-姿态估计-人体关键点-人体mesh建模 开源户外三维人体数据集 @inproceedings{vonMarcard2018, title = {Recovering Accurate 3D Human Pose in The Wild Using IMUs and a Moving Camera}, author = {von Marc

数据集 Ubody人体smplx三维建模mesh-姿态估计 >> DataBall

Ubody开源人体三维源数据集-smplx-三维建模-姿态估计 UBody:一个连接全身网格恢复和真实生活场景的上半身数据集,旨在拟合全身网格恢复任务与现实场景之间的差距。 UBody包含来自多人的现实场景的1051k张高质量图像,这些图像拥有2D全身关键点、3D SMPLX模型。 UBody由国际数字经济学院(IDEA)提供。 (UBody was used for mesh r

概率论与数理统计(1)

第一节博客已经整理了求导的公式,一些常用的概念。链接如下:高等数学基础(1)-CSDN博客。         第二节博客整理了微积分的公式及其相关概念。链接如下:高等数学基础(2)——微积分-CSDN博客         第三节博客则整理了泰勒公式和拉格朗日公式的相关概念。链接如下:高等数学基础(3)——泰勒公式与拉格朗日-CSDN博客         第四节博客则整理了行

Kaggle克隆github项目+文件操作+Kaggle常见操作问题解决方案——一文搞定,以openpose姿态估计项目为例

文章目录 前言一、Kaggle克隆仓库1、克隆项目2、查看目录 二、安装依赖三、文件的上传、复制、转移操作1.上传.pth文件到input目录2、将权重文件从input目录转移到工作目录 三、修改工作目录里的文件内容1、修改demo_camera.py内容 四、运行! 前言 想跑一些深度学习的项目,但是电脑没有显卡,遂看向云服务器Kaggle,这里可以每周免费使用30h的GP

【译】PCL官网教程翻译(18):估计一组点的视点特征直方图(VFH)签名 - Estimating VFH signatures for a set of points

英文原文查看 估计一组点的视点特征直方图(VFH)签名 本文描述了视点特征直方图([VFH])描述符,这是一种针对聚类(如对象)识别和6DOF姿态估计问题的点簇表示方法。 下图展示了一个VFH识别和姿态估计的例子。给定一组火车数据(除最左边的点云外,最上面一行、最下面一行),学习一个模型,然后使用一个云(最左边的部分)查询/测试模型。匹配的结果按从最好到最差的顺序从左到右从左下角开始。有关更多

分歧时间估计与被子植物的年代-文献精读43

Ad fontes: divergence-time estimation and the age of angiosperms 回归本源:分歧时间估计与被子植物的年代 摘要 准确的分歧时间对于解释和理解谱系演化的背景至关重要。在过去的几十年里,有关冠被子植物推测的分子年龄(通常估计为晚侏罗世至二叠纪)与化石记录(将被子植物置于早白垩纪)之间的差异,引发了广泛的争论。如果冠被子植物早在二

SLAM ORB-SLAM2(29)PnP估计姿态

SLAM ORB-SLAM2(29)PnP估计姿态 1. PnP问题2. EPnP算法2.1. 计算4对控制点的世界坐标2.2. 计算齐次质心坐标2.3. 计算4对控制点的相机坐标2.3.1. 构造M矩阵2.3.2. 计算 M T M M^TM MTM的0特征值对应的特征向量2.3.3. 计算零空间的秩2.3.4. 计算线性组合的系数 2.4. 选择最小重投影误差 3. 标题

pytorch负对数似然损失函数介绍

nn.NLLLoss(负对数似然损失)是 PyTorch 中的一种损失函数,常用于分类任务,特别是在模型的输出已经经过了 log-softmax 的情况下。与 nn.CrossEntropyLoss 不同的是,nn.NLLLoss 期望输入的是对数概率值(即 log-softmax 的输出),而不是未经过处理的 logits。 ‌Log-Softmax函数‌是对Softmax函数的对数版本,它在

损失函数、成本函数cost 、最大似然估计

一、损失函数 什么是损失函数? 【深度学习】一文读懂机器学习常用损失函数(Loss Function)-腾讯云开发者社区-腾讯云 损失函数(loss function)是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函

End-to-End视觉里程计新突破:从运动模糊图像中精确估计相机姿态

更多优质内容,请关注公众号:智驾机器人技术前线 1.论文信息 论文标题:MBRVO: A Blur Robust Visual Odometry Based on Motion Blurred Artifact Prior 作者:Jialu Zhang, Jituo Li*, Jiaqi Li, Yue Sun, Xinqi Liu, Zhi Zheng, and Guodong Lu