多数问题求解之蒙特卡洛与分治法

2024-03-14 00:04

本文主要是介绍多数问题求解之蒙特卡洛与分治法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多数问题(Majority Problem)是一个有多种求解方法的经典问题,其问题定义如下:

给定一个大小为 n n n的数组,找出其中出现次数超过 n / 2 n/2 n/2的元素

例如:当输入数组为 [ 5 , 3 , 5 , 2 , 3 , 5 , 5 ] [5, 3, 5, 2, 3, 5, 5] [5,3,5,2,3,5,5],则 5 5 5是多数(majority)。

本文将介绍该问题的多种求解方法,重点介绍蒙特卡洛与分治法2种。

1. 解决思路

面对一个未知的算法问题,我们最开始很自然地会使用简单粗暴的方法。

1.1 暴力解法

暴力解法就是遍历整个数组,依次判断每个元素是否是多数。其伪代码如下:

Majority(A[1, n])
for(i = 1 to n)cnt = 1for(j = 1 to n)if (i != j and A[i]==A[j])cnt++endif (cnt > n/2) return "A[i] is the majortiy"endreturn "No majority"

暴力算法的缺点就是费时间,时间复杂度为 O ( n 2 ) O(n^2) O(n2)。那有什么办法能少一些遍历的时间代价呢?哈希表就是一种用空间换时间的方法。

1.2 哈希表

上面的暴力解法中,我们在循环遍历中更新元素出现的次数,然后再判断是否是多数。可以改为只遍历数组一次,用哈希表记录每个元素出现的次数,然后再遍历哈希表找到出现次数最大的元素,判断其出现次数是否超过 n / 2 n/2 n/2

这样时间复杂度降为了 O ( n ) O(n) O(n),空间复杂度为 O ( n ) O(n) O(n)。时间复杂度还能更优化一点吗?下面让我们来看下分治法的求解思路。

1.3 分治法

我们把原始数组分为两半:在前一半子数组中,找到多数 A A A;在后一半子数组中,找到多数 B B B。那么原始数组的多数一定在 A A A B B B之间,当二者相等时,原始数组的多数就已经找到了;当二者不等时,比较 A A A B B B出现的次数哪个大于 n / 2 n/2 n/2即可。

算法的时间复杂度 T ( n ) = T ( n / 2 ) + 2 n = O ( n log ⁡ n ) T(n)=T(n/2)+2n=O(n\log{n}) T(n)=T(n/2)+2n=O(nlogn)。具体的C语言代码实现可参见第2节。

1.4 蒙特卡洛法

蒙特卡罗(Monte Carlo)算法是一种随机算法,在一般情况下可以保证对问题的所有实例都以高概率给出正确解,但是通常无法判定一个具体解是否正确。

在多数问题中,蒙特卡洛法的思想是随机从数组中选择一个元素,判断是否是多数。如果不是多数的话,再随机选择一个。在存在多数的情况下,因为随机选择到多数的概率超过 1 2 \frac{1}{2} 21,算法找不到多数的概率小于 1 2 \frac{1}{2} 21

该算法的平均时间复杂度为 O ( n ) O(n) O(n)

2. 代码

以下C语言代码依次实现了Monte Carlo以及分治法求解多数问题,并比较了两种算法的运行时间。

  1. 首先用户需输入测试数据的文件路径,按下回车键。
  2. 然后进入Monte Carlo模式需输入重复的次数。
  3. 待用户输入完成,按下回车键后,对Monte Carlo算法求解多数问题计时开始,直至输出多数问题的结果计时结束,打印输出运行时间(ms)。
  4. Monte Carlo结束后直接进入分治法求解,开始计时,直至分治法输出多数问题的结果计时结束,打印输出运行时间(ms)。
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <windows.h> using namespace std;const int N = 2000000;        //定义数组的最大长度 int a[N];bool majorityMC_once(int a[], int len, int *result) { //对长度为len的数组a[]进行一次蒙特卡洛寻找多数 int rnd = rand() % len;  //生成[0, len-1)的一个随机下标 int x = a[rnd];int count = 0;           //记录 x 在数组a[]中出现的次数 for (int i = 0; i < len; i++) { if (a[i] == x) {count++;}}if (count > (len / 2)) { //若 x 出现次数超过数组长度的一半,则一次蒙特卡洛找到多数,返回true *result = x;         //将找到的多数的值传给result return true;} else {                   //否则,一次蒙特卡洛未找到多数,返回false return false;}
}bool majorityMC_k_times(int a[], int len, int *result, int k) { //k次蒙特卡洛 for (int i = 1; i <= k; i++) {if(majorityMC_once(a, len, result)) { //只要有一次蒙特卡洛找到多数,则返回true              return true;}} return false;                             //k次蒙特卡洛均未找到多数,则返回false 
}bool majorityDC(int a[], int start, int end, int *result) { //分治法求解多数问题,数组下标区间为[start, end] if (start == end) {*result = a[end];return true;}else {int m1, m2;majorityDC(a, start, (start + end) / 2, &m1);    //m1为前半区间[start, (start + end) / 2]的多数 majorityDC(a, (start + end) / 2 + 1, end, &m2);  //m2为后半区间[(start + end) / 2 + 1, end]的多数 int count1 = 0, count2 = 0;for (int i = start; i <= end; i++) {if (a[i] == m1) {     //count1记录m1在数组a[]中出现的次数 count1++;}if (a[i] == m2) {     //count2记录m2在数组a[]中出现的次数 count2++;}}if (count1 > ((end - start + 1) / 2)) { //m1在数组a[]中出现的次数大于数组长度的一半,则m1为多数 *result = m1;return true;} else if (count2 > ((end - start + 1) / 2)) { //m2在数组a[]中出现的次数大于数组长度的一半,则m2为多数 *result = m2;return true;}else {  return false;         //m1, m2均不是多数,则数组a[]的多数不存在}}
}int main() {srand(time(NULL));  //设置时间函数time(NULL)为随机数种子 char s[100];cout << "请输入测试数据文件路径:" << endl;cin >> s; FILE *fp;fp = fopen(s, "r");if (fp == NULL) {cout << "Can not open the file!" << endl;exit(0);}int i = 0;while (fscanf(fp, "%d\n", &a[i]) != EOF) {  //读取文件中的数据到数组a[]中 i++;}fclose(fp); cout << "********************** Monte Carlo *********************" << endl;int k;cout << "请输入 Monte Carlo 重复的次数: ";cin >> k;LARGE_INTEGER nFreq;LARGE_INTEGER nBeginTime;LARGE_INTEGER nEndTime;QueryPerformanceFrequency(&nFreq);QueryPerformanceCounter(&nBeginTime);  //Monte Carlo计时开始 int resultMC;if (majorityMC_k_times(a, i, &resultMC, k)) {cout << resultMC << " is the majority" << endl;} else {cout << "Can not find the majority!" << endl;}QueryPerformanceCounter(&nEndTime);  //Monte Carlo计时结束 double time = (double)(nEndTime.QuadPart - nBeginTime.QuadPart) / nFreq.QuadPart * 1000;cout << "Running time: " << time << "ms" << endl;cout << endl;cout << "****************** Divide and Conquer ******************" << endl;QueryPerformanceFrequency(&nFreq);QueryPerformanceCounter(&nBeginTime);  //分治法计时开始 int resultDC;if (majorityDC(a, 0, i - 1, &resultDC)) {cout << resultDC << " is the majority" << endl;} else {cout << "Can not find the majority!" << endl;}QueryPerformanceCounter(&nEndTime);    //分治法计时结束 time = (double)(nEndTime.QuadPart - nBeginTime.QuadPart) / nFreq.QuadPart * 1000;cout << "Running time: " << time << "ms" << endl;return 0;
}

3. 运行结果

基于测试数据,求解得到如下结果:

  • dataset1.txt:none
  • dataset2.txt:991
  • data_1015.txt:none
  • data_1015l.txt:none

多次运行程序发现,在多数问题有解时,采用Monte Carlo算法求解效率普遍比分治法高,但是在Monte Carlo算法重复次数较少时,它在实际中并不总是返回正确结果。如测试数据为dataset2.txt,Monte Carlo重复1次时,可能会找不到多数问题的解,如下图。

在这里插入图片描述

其他运行示例:

(1)dataset1.txt,Monte Carlo重复次数1000:

在这里插入图片描述

(2)dataset2.txt,Monte Carlo重复次数20:

在这里插入图片描述

(3)data_1015.txt,Monte Carlo重复次数1000:

在这里插入图片描述

(4)data_1015l.txt,重复次数1000:

在这里插入图片描述

这篇关于多数问题求解之蒙特卡洛与分治法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/806634

相关文章

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

Java程序运行时出现乱码问题的排查与解决方法

《Java程序运行时出现乱码问题的排查与解决方法》本文主要介绍了Java程序运行时出现乱码问题的排查与解决方法,包括检查Java源文件编码、检查编译时的编码设置、检查运行时的编码设置、检查命令提示符的... 目录一、检查 Java 源文件编码二、检查编译时的编码设置三、检查运行时的编码设置四、检查命令提示符

Jackson库进行JSON 序列化时遇到了无限递归(Infinite Recursion)的问题及解决方案

《Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursion)的问题及解决方案》使用Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursi... 目录解决方案‌1. 使用 @jsonIgnore 忽略一个方向的引用2. 使用 @JsonManagedR