【深度学习笔记】7_3 小批量随机梯度下降

2024-03-12 22:04

本文主要是介绍【深度学习笔记】7_3 小批量随机梯度下降,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图

7.3 小批量随机梯度下降

在每一次迭代中,梯度下降使用整个训练数据集来计算梯度,因此它有时也被称为批量梯度下降(batch gradient descent)。而随机梯度下降在每次迭代中只随机采样一个样本来计算梯度。正如我们在前几章中所看到的,我们还可以在每轮迭代中随机均匀采样多个样本来组成一个小批量,然后使用这个小批量来计算梯度。下面就来描述小批量随机梯度下降。

设目标函数 f ( x ) : R d → R f(\boldsymbol{x}): \mathbb{R}^d \rightarrow \mathbb{R} f(x):RdR。在迭代开始前的时间步设为0。该时间步的自变量记为 x 0 ∈ R d \boldsymbol{x}_0\in \mathbb{R}^d x0Rd,通常由随机初始化得到。在接下来的每一个时间步 t > 0 t>0 t>0中,小批量随机梯度下降随机均匀采样一个由训练数据样本索引组成的小批量 B t \mathcal{B}_t Bt。我们可以通过重复采样(sampling with replacement)或者不重复采样(sampling without replacement)得到一个小批量中的各个样本。前者允许同一个小批量中出现重复的样本,后者则不允许如此,且更常见。对于这两者间的任一种方式,都可以使用

g t ← ∇ f B t ( x t − 1 ) = 1 ∣ B ∣ ∑ i ∈ B t ∇ f i ( x t − 1 ) \boldsymbol{g}_t \leftarrow \nabla f_{\mathcal{B}_t}(\boldsymbol{x}_{t-1}) = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}_t}\nabla f_i(\boldsymbol{x}_{t-1}) gtfBt(xt1)=B1iBtfi(xt1)

来计算时间步 t t t的小批量 B t \mathcal{B}_t Bt上目标函数位于 x t − 1 \boldsymbol{x}_{t-1} xt1处的梯度 g t \boldsymbol{g}_t gt。这里 ∣ B ∣ |\mathcal{B}| B代表批量大小,即小批量中样本的个数,是一个超参数。同随机梯度一样,重复采样所得的小批量随机梯度 g t \boldsymbol{g}_t gt也是对梯度 ∇ f ( x t − 1 ) \nabla f(\boldsymbol{x}_{t-1}) f(xt1)的无偏估计。给定学习率 η t \eta_t ηt(取正数),小批量随机梯度下降对自变量的迭代如下:

x t ← x t − 1 − η t g t . \boldsymbol{x}_t \leftarrow \boldsymbol{x}_{t-1} - \eta_t \boldsymbol{g}_t. xtxt1ηtgt.

基于随机采样得到的梯度的方差在迭代过程中无法减小,因此在实际中,(小批量)随机梯度下降的学习率可以在迭代过程中自我衰减,例如 η t = η t α \eta_t=\eta t^\alpha ηt=ηtα(通常 α = − 1 \alpha=-1 α=1或者 − 0.5 -0.5 0.5)、 η t = η α t \eta_t = \eta \alpha^t ηt=ηαt(如 α = 0.95 \alpha=0.95 α=0.95)或者每迭代若干次后将学习率衰减一次。如此一来,学习率和(小批量)随机梯度乘积的方差会减小。而梯度下降在迭代过程中一直使用目标函数的真实梯度,无须自我衰减学习率。

小批量随机梯度下降中每次迭代的计算开销为 O ( ∣ B ∣ ) \mathcal{O}(|\mathcal{B}|) O(B)。当批量大小为1时,该算法即为随机梯度下降;当批量大小等于训练数据样本数时,该算法即为梯度下降。当批量较小时,每次迭代中使用的样本少,这会导致并行处理和内存使用效率变低。这使得在计算同样数目样本的情况下比使用更大批量时所花时间更多。当批量较大时,每个小批量梯度里可能含有更多的冗余信息。为了得到较好的解,批量较大时比批量较小时需要计算的样本数目可能更多,例如增大迭代周期数。

7.3.1 读取数据

本章里我们将使用一个来自NASA的测试不同飞机机翼噪音的数据集来比较各个优化算法 [1]。我们使用该数据集的前1,500个样本和5个特征,并使用标准化对数据进行预处理。

%matplotlib inline
import numpy as np
import time
import torch
from torch import nn, optim
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2ldef get_data_ch7():  # 本函数已保存在d2lzh_pytorch包中方便以后使用data = np.genfromtxt('../../data/airfoil_self_noise.dat', delimiter='\t')data = (data - data.mean(axis=0)) / data.std(axis=0)return torch.tensor(data[:1500, :-1], dtype=torch.float32), \torch.tensor(data[:1500, -1], dtype=torch.float32) # 前1500个样本(每个样本5个特征)features, labels = get_data_ch7()
features.shape # torch.Size([1500, 5])

7.3.2 从零开始实现

3.2节(线性回归的从零开始实现)中已经实现过小批量随机梯度下降算法。我们在这里将它的输入参数变得更加通用,主要是为了方便本章后面介绍的其他优化算法也可以使用同样的输入。具体来说,我们添加了一个状态输入states并将超参数放在字典hyperparams里。此外,我们将在训练函数里对各个小批量样本的损失求平均,因此优化算法里的梯度不需要除以批量大小。

def sgd(params, states, hyperparams):for p in params:p.data -= hyperparams['lr'] * p.grad.data

下面实现一个通用的训练函数,以方便本章后面介绍的其他优化算法使用。它初始化一个线性回归模型,然后可以使用小批量随机梯度下降以及后续小节介绍的其他算法来训练模型。

# 本函数已保存在d2lzh_pytorch包中方便以后使用
def train_ch7(optimizer_fn, states, hyperparams, features, labels,batch_size=10, num_epochs=2):# 初始化模型net, loss = d2l.linreg, d2l.squared_lossw = torch.nn.Parameter(torch.tensor(np.random.normal(0, 0.01, size=(features.shape[1], 1)), dtype=torch.float32),requires_grad=True)b = torch.nn.Parameter(torch.zeros(1, dtype=torch.float32), requires_grad=True)def eval_loss():return loss(net(features, w, b), labels).mean().item()ls = [eval_loss()]data_iter = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(features, labels), batch_size, shuffle=True)for _ in range(num_epochs):start = time.time()for batch_i, (X, y) in enumerate(data_iter):l = loss(net(X, w, b), y).mean()  # 使用平均损失# 梯度清零if w.grad is not None:w.grad.data.zero_()b.grad.data.zero_()l.backward()optimizer_fn([w, b], states, hyperparams)  # 迭代模型参数if (batch_i + 1) * batch_size % 100 == 0:ls.append(eval_loss())  # 每100个样本记录下当前训练误差# 打印结果和作图print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))d2l.set_figsize()d2l.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)d2l.plt.xlabel('epoch')d2l.plt.ylabel('loss')

当批量大小为样本总数1,500时,优化使用的是梯度下降。梯度下降的1个迭代周期对模型参数只迭代1次。可以看到6次迭代后目标函数值(训练损失)的下降趋向了平稳。

def train_sgd(lr, batch_size, num_epochs=2):train_ch7(sgd, None, {'lr': lr}, features, labels, batch_size, num_epochs)train_sgd(1, 1500, 6)

输出:

loss: 0.243605, 0.014335 sec per epoch

在这里插入图片描述

当批量大小为1时,优化使用的是随机梯度下降。为了简化实现,有关(小批量)随机梯度下降的实验中,我们未对学习率进行自我衰减,而是直接采用较小的常数学习率。随机梯度下降中,每处理一个样本会更新一次自变量(模型参数),一个迭代周期里会对自变量进行1,500次更新。可以看到,目标函数值的下降在1个迭代周期后就变得较为平缓。

train_sgd(0.005, 1)

输出:

loss: 0.243433, 0.270011 sec per epoch

在这里插入图片描述

虽然随机梯度下降和梯度下降在一个迭代周期里都处理了1,500个样本,但实验中随机梯度下降的一个迭代周期耗时更多。这是因为随机梯度下降在一个迭代周期里做了更多次的自变量迭代,而且单样本的梯度计算难以有效利用矢量计算。

当批量大小为10时,优化使用的是小批量随机梯度下降。它在每个迭代周期的耗时介于梯度下降和随机梯度下降的耗时之间。

train_sgd(0.05, 10)

输出:

loss: 0.242805, 0.078792 sec per epoch

在这里插入图片描述

7.3.3 简洁实现

在PyTorch里可以通过创建optimizer实例来调用优化算法。这能让实现更简洁。下面实现一个通用的训练函数,它通过优化算法的函数optimizer_fn和超参数optimizer_hyperparams来创建optimizer实例。

# 本函数与原书不同的是这里第一个参数优化器函数而不是优化器的名字
# 例如: optimizer_fn=torch.optim.SGD, optimizer_hyperparams={"lr": 0.05}
def train_pytorch_ch7(optimizer_fn, optimizer_hyperparams, features, labels,batch_size=10, num_epochs=2):# 初始化模型net = nn.Sequential(nn.Linear(features.shape[-1], 1))loss = nn.MSELoss()optimizer = optimizer_fn(net.parameters(), **optimizer_hyperparams)def eval_loss():return loss(net(features).view(-1), labels).item() / 2ls = [eval_loss()]data_iter = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(features, labels), batch_size, shuffle=True)for _ in range(num_epochs):start = time.time()for batch_i, (X, y) in enumerate(data_iter):# 除以2是为了和train_ch7保持一致, 因为squared_loss中除了2l = loss(net(X).view(-1), y) / 2 optimizer.zero_grad()l.backward()optimizer.step()if (batch_i + 1) * batch_size % 100 == 0:ls.append(eval_loss())# 打印结果和作图print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))d2l.set_figsize()d2l.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)d2l.plt.xlabel('epoch')d2l.plt.ylabel('loss')

使用PyTorch重复上一个实验。

train_pytorch_ch7(optim.SGD, {"lr": 0.05}, features, labels, 10)

输出:

loss: 0.245491, 0.044150 sec per epoch

在这里插入图片描述

小结

  • 小批量随机梯度每次随机均匀采样一个小批量的训练样本来计算梯度。
  • 在实际中,(小批量)随机梯度下降的学习率可以在迭代过程中自我衰减。
  • 通常,小批量随机梯度在每个迭代周期的耗时介于梯度下降和随机梯度下降的耗时之间。

参考文献

[1] 飞机机翼噪音数据集。https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise


注:除代码外本节与原书此节基本相同,原书传送门

这篇关于【深度学习笔记】7_3 小批量随机梯度下降的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/802719

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

使用C#如何创建人名或其他物体随机分组

《使用C#如何创建人名或其他物体随机分组》文章描述了一个随机分配人员到多个团队的代码示例,包括将人员列表随机化并根据组数分配到不同组,最后按组号排序显示结果... 目录C#创建人名或其他物体随机分组此示例使用以下代码将人员分配到组代码首先将lstPeople ListBox总结C#创建人名或其他物体随机分组

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06