给 K8s 装上大数据调度引擎:伏羲架构升级 K8s 统一调度

2024-03-12 02:59

本文主要是介绍给 K8s 装上大数据调度引擎:伏羲架构升级 K8s 统一调度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

dbf3f7cf7651b9fc4ad8219b10e13d78.gif


01

引言

Aliware

基于 K8s 的统一调度是阿里集团的核心项目,随着2021年双十一落下帷幕,这个历时一年多,汇集了蚂蚁、电商、搜索、计算平台等几大调度团队的联合项目在生产场景得到了终极验证。

作为统一调度项目的核心团队,伏羲成功地将 MaxCompute 弹内几万台机器、数百万核计算资源接入了统一调度系统,全程对业务和用户完全无感,无一故障,无一破线,完美实现了“飞行中更换引擎”的目标。统一调度在 MaxCompute 场景的规模化落地,为今年丝般顺滑地支撑双十一洪峰提供了强力保障。通过统一调度项目,伏羲也实现了架构上的再次升级,全面融入 K8s 统一调度架构,让 K8s 生态兼具在线服务和离线大数据的调度能力。

过去几年,阿里技术人一直在探索如何在一个资源池上让不同业务形态的应用在时空上“削峰填谷”,以提升利用率、降低成本、极致资源弹性;另一方面,飞天伏羲在长期的架构演进中,也一直在寻求如何兼容开源生态,更好地为开源引擎提供资源调度服务。基于 K8s 的统一调度,是阿里集团多年混部方案自然演进的结果,也是伏羲拥抱开源的终极形态。本文将从集团混部项目开始谈起,介绍基于 K8s 的统一调度方案,以及 MaxCompute 迁移统一调度的过程。

02

始于混部,终于统一调度

Aliware

阿里集团需要一个庞大的资源系统支撑线上丰富的业务形态,搜索、电商、大数据、数据库等,我们观察到电商纯在线集群长期处于低水位的状态,常态利用率在 10%以下,而以 MaxCompte 为代表的大数据离线集群长期处于高水位,平均利用率 70-80%。

以集团 10 万台(2017 年数字)在线机器为例,通过混部,理论上可以将机器利用率由 10%提升到 45%,这意味着每年可以额外提供 7.8 万台同等计算能力的机器,这是一笔巨大的收益。但混部的挑战也是巨大的,其中最核心的挑战是如何提供一套资源共享机制(全局、单机),在保障各应用 SLA 的前提下,达成集群利用率提升的目标。

01

基于资源静态划分的混部

集团混部项目从 2015 年 9 月正式立项,在经历了初期的技术栈整合和隔离技术的探索后,2017 年正式进入核心生产。当时 0 层作为资源展板,按机器粒度划分在线和离线资源的比例,管理机器的混部角色和状态,而在线离线两个一层调度器基于 0 层分配的资源进行各自业务场景的调度。2017 年双十一,电商和蚂蚁两个混部场景均平稳完成了大促的目标,但也有明显缺点:

1)离线作业的资源使用没有保障,可能被在线应用无条件抢占;

2)在线离线调度器静态划分资源,缺乏灵活性;

3)大促期间,离线全部降级,在更大规模场景下,很难保障离线核心业务的稳定性。

02

混部的进阶:规模化混部

2018 年年初,集团调度系统要全面提升混部能力,将电商混部扩大到万台规模,并全力保障离线作业的运行质量。为此,混部项目提出了资源优先级的概念,通过资源优先级划分,使离线的高优先级作业(Latency Critical)

这篇关于给 K8s 装上大数据调度引擎:伏羲架构升级 K8s 统一调度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_39860915/article/details/122119452
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/799941

相关文章

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

将Mybatis升级为Mybatis-Plus的详细过程

《将Mybatis升级为Mybatis-Plus的详细过程》本文详细介绍了在若依管理系统(v3.8.8)中将MyBatis升级为MyBatis-Plus的过程,旨在提升开发效率,通过本文,开发者可实现... 目录说明流程增加依赖修改配置文件注释掉MyBATisConfig里面的Bean代码生成使用IDEA生

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Java异常架构Exception(异常)详解

《Java异常架构Exception(异常)详解》:本文主要介绍Java异常架构Exception(异常),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. Exception 类的概述Exception的分类2. 受检异常(Checked Exception)

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1