WA、UAR、F1和sklearn自带的函数

2024-03-11 11:30
文章标签 函数 自带 f1 sklearn wa uar

本文主要是介绍WA、UAR、F1和sklearn自带的函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多分类问题中常用的评价指标。

目录

1.WA(weighted accuracy)加权准确率

2.UAR(unweighted average recall)未加权平均召回率

3.F1分数

4.使用sklearn进行计算

5.适用场景

6.其他


1.WA(weighted accuracy)加权准确率

在多分类问题中,加权准确率(Weighted Accuracy)是一种考虑每个类别样本数量的准确率计算方式。对于样本不均衡的情况,该方式比较适用。其计算方式是将每个类别的准确率乘以该类别在总样本中的比例(权重),然后求和。

其实就是我们日常跑代码出来的acc

计算公式如下:

WA = \frac{\sum (TP_i) }{\sum (TP_i + FP_i + FN_i)}

其中,TP_i 是第 i 类的真正例数量,FP_i 是第 i 类的假正例数量,FN_i 是第 i 类的假反例数量。Σ 表示对所有类别求和。

2.UAR(unweighted average recall)未加权平均召回率

是一种性能评估指标,主要用于多分类问题。它表示各类别的平均召回率(Recall),在计算时,不对各类别进行加权。对于每个类别,召回率是该类别中真正被正确预测的样本数与该类别中所有样本数的比值。

UAR在评估一个分类器时,对每个类别都给予相同的重要性,而不考虑各类别的样本数量。这使得UAR在处理不平衡数据集时具有一定的优势,因为它不会受到数量较多的类别的影响。

计算公式如下:

UAR = \frac{1}{N}* \sum (Recall_i)

其中,Recall_i 是第 i 类的召回率,N 是类别的总数。

3.F1分数

F1分数是精确率(Precision)和召回率(Recall)的调和平均值。在多分类问题中,通常会计算每个类别的F1分数,然后取平均值作为总体的F1分数。平均方法可以是简单的算术平均(Macro-F1)(常用),也可以是根据每个类别的样本数量进行加权的平均(Weighted-F1)。

计算公式如下:

F1 = \frac{2 * Precision * Recall }{(Precision + Recall)}

4.使用sklearn进行计算

from sklearn.metrics import classification_report

使用👆导入的包,模型输出预测值y_pred和真实值y_test得到report如下:

report = classification_report(y_test, y_pred)
              precision    recall  f1-score   support0       0.89      0.80      0.84        101       0.60      0.75      0.67         82       0.92      0.85      0.88        13accuracy                           0.81        31macro avg       0.80      0.80      0.80        31
weighted avg       0.83      0.81      0.82        31

"macro avg"行表示,对于精度(precision),召回率(recall)和F1分数(f1-score),它们的未加权平均值分别是0.80、0.80和0.80。

"weighted avg"行表示,对于精度(precision),召回率(recall)和F1分数(f1-score),它们的加权平均值分别是0.83、0.81和0.82。加权平均是根据每个类别的样本数进行加权的,所以在这个案例中,类别2(有13个样本)的影响力大于类别0(10个样本)和类别1(8个样本)。

accuracy,可以视作每个类别的权重都一样的加权准确率。

5.适用场景

在类别不平衡的情况下,UAR 和 F1 分数通常比准确率更能反映模型的性能。

6.其他

精确率(Precision)和准确率(Accuracy)都是评价模型性能的重要指标,但是他们衡量的角度不同。

准确率(Accuracy):是所有预测正确的样本(真正例TP和真负例TN)占总样本数(TP+TN+FP+FN)的比例。它适用于正负样本比例相当的情况。在正负样本极度不均衡的情况下,准确率就没有太大的意义。

   Accuracy = (TP+TN) / (TP+TN+FP+FN)

精确率(Precision):是预测为正且预测正确的样本(真正例TP)占所有预测为正的样本数(TP+FP)的比例。它适用于关注假正例(FP,即将负例错误预测为正例)的情况。

   Precision = TP / (TP+FP)

举个例子,假设有100个邮件,其中95个是垃圾邮件,5个是正常邮件。如果模型预测所有邮件都是垃圾邮件,那么准确率是95%(因为正确预测了95个垃圾邮件),但是精确率就是0%(因为没有预测出任何正常邮件)。所以在不同的场景和需求下,我们需要根据实际情况选择合适的评价指标。

这篇关于WA、UAR、F1和sklearn自带的函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/797679

相关文章

pandas使用apply函数给表格同时添加多列

《pandas使用apply函数给表格同时添加多列》本文介绍了利用Pandas的apply函数在DataFrame中同时添加多列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、Pandas使用apply函数给表格同时添加多列二、应用示例一、Pandas使用apply函

Python中Namespace()函数详解

《Python中Namespace()函数详解》Namespace是argparse模块提供的一个类,用于创建命名空间对象,它允许通过点操作符访问数据,比字典更易读,在深度学习项目中常用于加载配置、命... 目录1. 为什么使用 Namespace?2. Namespace 的本质是什么?3. Namesp

MySQL中如何求平均值常见实例(AVG函数详解)

《MySQL中如何求平均值常见实例(AVG函数详解)》MySQLavg()是一个聚合函数,用于返回各种记录中表达式的平均值,:本文主要介绍MySQL中用AVG函数如何求平均值的相关资料,文中通过代... 目录前言一、基本语法二、示例讲解1. 计算全表平均分2. 计算某门课程的平均分(例如:Math)三、结合

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法